Liu, Y. C. et al. Ancient DNA reveals five streams of migration into Micronesia and matrilocality in early Pacific seafarers. Science https://doi.org/10.1126/science.abm6536 (2022).
Sjögren, K. G. et al. Kinship and social organization in Copper Age Europe. A cross-disciplinary analysis of archaeology, DNA, isotopes, and anthropology from two Bell Beaker cemeteries. PLoS ONE 15, e0241278 (2020).
Moore, H. et al. Migration and community in Bronze Age Orkney: innovation and continuity at the Links of Noltland. Antiquity 96, 541–559 (2022).
Blöcher, J. et al. Descent, marriage, and residence practices of a 3,800-year-old pastoral community in Central Eurasia. Proc. Natl Acad. Sci. USA 120, e2303574120 (2023).
Armit, I. et al. Kinship practices in Early Iron Age South-east Europe: genetic and isotopic analysis of burials from the Dolge njive barrow cemetery, Dolenjska, Slovenia. Antiquity 97, 403–418 (2023).
Rivollat, M. et al. Extensive pedigrees reveal the social organization of a Neolithic community. Nature 620, 600–606 (2023).
Mittnik, A. et al. Kinship-based social inequality in Bronze Age Europe. Science https://doi.org/10.1126/science.aax6219 (2019).
Sánchez-Quinto, F. et al. Megalithic tombs in western and northern Neolithic Europe were linked to a kindred society. Proc. Natl Acad. Sci. USA 116, 9469–9474 (2019).
Fowler, C. et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature 601, 584–587 (2022).
Chyleński, M. et al. Patrilocality and hunter-gatherer-related ancestry of populations in East-Central Europe during the Middle Bronze Age. Nat. Commun. 14, 4395 (2023).
Watson-Franke, M.-B. Masculinity and the ‘Matrilineal Puzzle’. Anthropos 87, 475–488 (1992).
Knight, C. in Early Human Kinship (eds Allen, N. J. et al.) 61–82 (Wiley, 2008).
Ji, T., Zhang, H., Pagel, M. & Mace, R. A phylogenetic analysis of dispersal norms, descent and subsistence in Sino-Tibetans. Evol. Hum. Behav. 43, 147–154 (2022).
Gunnarsdóttir, E. D. et al. Larger mitochondrial DNA than Y-chromosome differences between matrilocal and patrilocal groups from Sumatra. Nat. Commun. 2, 228 (2011).
Oota, H., Settheetham-Ishida, W., Tiwawech, D., Ishida, T. & Stoneking, M. Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nat. Genet. 29, 20–21 (2001).
Ji, T. et al. Reproductive competition between females in the matrilineal Mosuo of southwestern China. Philos. Trans. R. Soc. B 368, 20130081 (2013).
De los Santos, R. et al. Genetic diversity and relationships of Tlingit moieties. Hum. Biol. 91, 95–116 (2019).
Lu, Y. et al. Mitochondrial origin of the matrilocal Mosuo people in China. Mitochondrial DNA 23, 13–19 (2012).
Holden, C. & Mace, R. Phylogenetic analysis of the evolution of lactose digestion in adults. Hum. Biol. 69, 605–628 (1997).
Jordan, F. M., Gray, R. D., Greenhill, S. J. & Mace, R. Matrilocal residence is ancestral in Austronesian societies. Proc. R. Soc. B 276, 1957–1964 (2009).
Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).
Gretzinger, J. et al. Evidence for dynastic succession among early Celtic elites in Central Europe. Nat. Hum. Behav. https://doi.org/10.1038/s41562-024-01888-7 (2024).
Cassidy, L. M. et al. Continental influx and pervasive matrilocality in Iron Age Britain. Nature 637, 1136–1142 (2025).
Dong, Y. et al. Low mitochondrial DNA diversity in an ancient population from China: insight into social organization at the Fujia site. Hum. Biol. 87, 71–84 (2015).
Zan, J., & Qin, Y. in China Archaeological Yearbook 2022 (ed. Chinese Archaeological Society) 347–348 (China Social Sciences Press, 2023).
Li, Z., Wang J., Liu G. & Zhao Z. Excavation of the Fujia archaeological site in Guangrao County, Shandong. Kaogu 9, 36–44 (2002).
He, D. & Yan H. Survey of Neolithic sites in Guangrao, Shandong. Archaeology 9, 769–781 (1985).
He, Z. Craniotomy 5,000 years ago. Fam. Chin. Med. 20, 10–11 (2013).
Jiang Z. 5,000-year-old skull with craniotomy discovered in Shandong. Chin. J. Med. Hist. 33, 57 (2003).
Kuhn, J. M. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).
Popli, D., Peyrégne, S. & Peter, B. M. KIN: a method to infer relatedness from low-coverage ancient DNA. Genome Biol. 24, 10 (2023).
Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2024).
Ensor, B. E. et al. The bioarchaeology of kinship: proposed revisions to assumptions guiding interpretation. Curr. Anthropol. 58, 739–761 (2017).
Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).
Fernandes, D. M. et al. A genetic history of the pre-contact Caribbean. Nature 590, 103–110 (2021).
Dong, Y. et al. Social and environmental factors influencing dietary choices among Dawenkou culture sites, Late Neolithic China. Holocene 31, 271–284 (2021).
Tang, Z., Wang, F., Lu, G. & Zhang, Z. Brief report on the settlement survey and excavation of the Jiaojia Site in Zhangqiu District, Jinan City, 2016–2017. Archaeology 12, 3–19 (2019).
Ma, F., Cai, Z. & Song, W. Research of hydrogeological environments for saline intrusion disaster prevention in Guangrao County. Gongcheng Dizhi Xuebao 1, 30–33 (1996).
Heaton, T. H. E. The 15N/14N ratios of plants in South Africa and Namibia: relationship to climate and coastal/saline environments. Oecologia 74, 236–246 (1987).
Kong, Q. The fauna remains from Dawenkou culture site, Wucun, Guangrao county. Haidai Kaogu 1, 122–123 (1989).
AlQahtani, S. J., Hector, M. P. & Liversidge, H. M. Brief communication: The London atlas of human tooth development and eruption. Am. J. Phys. Anthropol. 142, 481–490 (2010).
Dong, Y. & Luan, F. Reflections on the social organization of the late Dawenkou culture: evidence from DNA and stable isotopes. Kaogu 07, 98–107 (2017).
Wu, X. et al. Intermarriage and ancient polity alliances: isotopic evidence of cross-regional female exogamy during the Longshan period (2500–1900 BC). Antiquity 98, 48–65 (2024).
Bachofen, J. J. Das Mutterrecht (Kessinger, 2010).
Morgan, L. H. Ancient Society (1877) (Cambridge Scholars Publishing, 2009).
Engels, F. Der Ursprung Der Familie, Des Privateigentums Und Des Staats: Im Anschluß an Lewis H. Morgans Forschungen (Schweizerischen Volksbuchhandlung, 1884).
Bronislaw Kasper, M. Marriage: Past and Present. A Debate between Robert Briffault and Bronislaw Malinowski (Porter Sargent, 1956).
Strier, K. B. Primate Behavioral Ecology (Pearson, 2002).
Knipper, C. et al. Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proc. Natl Acad. Sci. USA 114, 10083–10088 (2017).
Žegarac, A. et al. Ancient genomes provide insights into family structure and the heredity of social status in the early Bronze Age of southeastern Europe. Sci. Rep. 11, 10072 (2021).
Ly, G. et al. From matrimonial practices to genetic diversity in Southeast Asian populations: the signature of the matrilineal puzzle. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0434 (2019).
He, K. et al. Antipodal pattern of millet and rice demography in response to 4.2 ka climate event in China. Quat. Sci. Rev. 295, 107786 (2022).
Shen, P. et al. Reconstruction of patrilineages and matrilineages of Samaritans and other Israeli populations from Y-chromosome and mitochondrial DNA sequence variation. Hum. Mutat. 24, 248–260 (2004).
Behar, D. M. et al. Counting the founders: the matrilineal genetic ancestry of the Jewish Diaspora. PLoS ONE 3, e2062 (2008).
Luan, F. The Periodization and Typology of the Dawenkou Culture: an Archaeological Study of the Haidai Region (Shandong Univ. Press, 1997).
Shelach, G. & Jaffe, Y. The earliest states in China: a long-term trajectory approach. J. Archaeol. Res. 22, 327–364 (2014).
Liu, L., Chen, X. & Hodges, R. State Formation in Early China (Bristol Classical, 2003).
Underhill, P. A. An analysis of mortuary ritual at the Dawenkou site, Shandong, China. J. East Asian Archaeol. 2, 98–127 (2000).
Gao, G. & Luan, F. Dawenkou Wenhua [Dawenkou Culture] (Cultural Relics Publishing House, 2004).
Fang, H. et al. Development of Complex Societies in Southeastern Shandong, China: Settlement Patterns from the Neolithic to the Han Period (The Yale Peabody Museum, 2022).
Kirby, K. R. et al. D-PLACE: a global database of cultural, linguistic and environmental diversity. PLoS ONE 11, e0158391 (2016).
Murdock, G. P. & White, D. R. D-PLACE dataset derived from Murdock and White 1969 ‘Standard Cross-Cultural Sample’. Zenodo https://doi.org/10.5281/zenodo.10201075 (2023).
Pinhasi, R., Fernandes, D. M., Sirak, K. & Cheronet, O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat. Protoc. 14, 1194–1205 (2019).
Velsco, I., Skourtianoti, E. & Brandt, G. Ancient DNA extraction from skeletal material. protocols.io https://doi.org/10.17504/protocols.io.baksicwe (2020).
Fellows Yates, J. A. et al. Reproducible, portable, and efficient ancient genome reconstruction with nf-core/eager. PeerJ 9, e10947 (2021).
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015).
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
Rohland, N. et al. Three assays for in-solution enrichment of ancient human DNA at more than a million SNPs. Genome Res. 32, 2068–2078 (2022).
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinform. 15, 356 (2014).
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
Schönherr, S., Weissensteiner, H., Kronenberg, F. & Forer, L. Haplogrep 3 – an interactive haplogroup classification and analysis platform. Nucleic Acids Res. 51, W263–W268 (2023).
Rubinacci, S., Hofmeister, R. J., Sousa da Mota, B. & Delaneau, O. Imputation of low-coverage sequencing data from 150,119 UK Biobank genomes. Nat. Genet. 55, 1088–1090 (2023).
Kelleher, J., Etheridge, A. M. & McVean, G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput. Biol. 12, e1004842 (2016).
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).
Li, C. National 1:200,000 Digital Geological Map (Public Version) Spatial Database 90 GB (Geoscientific Data and Discovery Publishing, 2019); http://geochina.cgs.gov.cn/geochina/geochinaen/article/pdf/2019S101.
Richards, M. P. & Hedges, R. E. M. Stable isotope evidence for similarities in the types of marine foods used by Late Mesolithic humans at sites along the Atlantic Coast of Europe. J. Archaeolog. Sci. 26, 717–722 (1999).
Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).