Card, N. S. et al. An accurate and rapidly calibrating speech neuroprosthesis. N. Engl. J. Med. 391, 609–618 (2024).
Willett, F. R. et al. A high-performance speech neuroprosthesis. Nature 620, 1031–1036 (2023).
Metzger, S. L. et al. A high-performance neuroprosthesis for speech decoding and avatar control. Nature 620, 1037–1046 (2023).
Silva, A. B., Littlejohn, K. T., Liu, J. R., Moses, D. A. & Chang, E. F. The speech neuroprosthesis. Nat. Rev. Neurosci. 25, 473–492 (2024).
Herff, C. et al. Generating natural, intelligible speech from brain activity in motor, premotor, and inferior frontal cortices. Front. Neurosci. 13, 1267 (2019).
Angrick, M. et al. Speech synthesis from ECoG using densely connected 3D convolutional neural networks. J. Neural Eng. 16, 036019 (2019).
Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from neural decoding of spoken sentences. Nature 568, 493–498 (2019).
Meng, K. et al. Continuous synthesis of artificial speech sounds from human cortical surface recordings during silent speech production. J. Neural Eng. 20, 046019 (2023).
Le Godais, G. et al. Overt speech decoding from cortical activity: a comparison of different linear methods. Front. Hum. Neurosci. 17, 1124065 (2023).
Liu, Y. et al. Decoding and synthesizing tonal language speech from brain activity. Sci. Adv. 9, eadh0478 (2023).
Berezutskaya, J. et al. Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models. J. Neural Eng. 20, 056010 (2023).
Shigemi, K. et al. Synthesizing speech from ECoG with a combination of transformer-based encoder and neural vocoder. In ICASSP 2023 – 2023 IEEE Int. Conf. Acoust. Speech Signal Process. 1–5 (IEEE, 2023).
Chen, X. et al. A neural speech decoding framework leveraging deep learning and speech synthesis. Nat. Mach. Intell. 6, 467–480 (2024).
Wilson, G. H. et al. Decoding spoken English from intracortical electrode arrays in dorsal precentral gyrus. J. Neural Eng. 17, 066007 (2020).
Wairagkar, M., Hochberg, L. R., Brandman, D. M. & Stavisky, S. D. Synthesizing speech by decoding intracortical neural activity from dorsal motor cortex. In 2023 11th Int. IEEE/EMBS Conf. on Neural Eng. (NER) 1–4 (IEEE, 2023).
Angrick, M. et al. Real-time synthesis of imagined speech processes from minimally invasive recordings of neural activity. Commun. Biol. 4, 1055 (2021).
Wu, X., Wellington, S., Fu, Z. & Zhang, D. Speech decoding from stereo-electroencephalography (sEEG) signals using advanced deep learning methods. J. Neural Eng. 21, 036055 (2024).
Angrick, M. et al. Online speech synthesis using a chronically implanted brain–computer interface in an individual with ALS. Sci. Rep. 14, 9617 (2024).
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems 30 (NIPS, 2017).
Downey, J. E., Schwed, N., Chase, S. M., Schwartz, A. B. & Collinger, J. L. Intracortical recording stability in human brain–computer interface users. J. Neural Eng. 15, 046016 (2018).
Valin, J.-M. & Skoglund, J. LPCNET: improving neural speech synthesis through linear prediction. In ICASSP 2019 – 2019 IEEE Int. Conf. on Acoust. Speech Signal Process. 5891–5895 (IEEE, 2019).
Li, Y. A., Han, C., Raghavan, V. S., Mischler, G. & Mesgarani, N. StyleTTS 2: towards human-level text-to-speech through style diffusion and adversarial training with large speech language models. Adv. Neural Inf. Process. Syst. 36, 19594–19621 (2023).
Dichter, B. K., Breshears, J. D., Leonard, M. K. & Chang, E. F. The control of vocal pitch in human laryngeal motor cortex. Cell 174, 21–31 (2018).
Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical activity in the null space: permitting preparation without movement. Nat. Neurosci. 17, 440–448 (2014).
Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Motor cortical visuomotor feedback activity is initially isolated from downstream targets in output-null neural state space dimensions. Neuron 95, 195–208 (2017).
Churchland, M. M. & Shenoy, K. V. Preparatory activity and the expansive null-space. Nat. Rev. Neurosci. 25, 213–236 (2024).
Moses, D. A. et al. Neuroprosthesis for decoding speech in a paralyzed person with anarthria. N. Engl. J. Med. 385, 217–227 (2021).
Kunz, E. M. et al. Representation of verbal thought in motor cortex and implications for speech neuroprostheses. Preprint at bioRxiv https://doi.org/10.1101/2024.10.04.616375 (2024).
Bouchard, K. E., Mesgarani, N., Johnson, K. & Chang, E. F. Functional organization of human sensorimotor cortex for speech articulation. Nature 495, 327–332 (2013).
Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F. Encoding of articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron 98, 1042–1054 (2018).
Lu, J. et al. Neural control of lexical tone production in human laryngeal motor cortex. Nat. Commun. 14, 6917 (2023).
Breshears, J. D., Molinaro, A. M. & Chang, E. F. A probabilistic map of the human ventral sensorimotor cortex using electrical stimulation. J. Neurosurg. 123, 340–349 (2015).
Ammanuel, S. G. et al. Intraoperative cortical stimulation mapping with laryngeal electromyography for the localization of human laryngeal motor cortex. J. Neurosurg. 141, 268–277 (2024).
Pandarinath, C. et al. Neural population dynamics in human motor cortex during movements in people with ALS. eLife 4, e07436 (2015).
Stavisky, S. D. et al. Neural ensemble dynamics in dorsal motor cortex during speech in people with paralysis. eLife 8, e46015 (2019).
Willett, F. R. et al. Hand knob area of premotor cortex represents the whole body in a compositional way. Cell 181, 396–409 (2020).
Ali, Y. H. et al. BRAND: a platform for closed-loop experiments with deep network models. J. Neural Eng. 21, 026046 (2024).
Young, D. et al. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation. J. Neural Eng. 15, 026014 (2018).
Levelt, W. J., Roelofs, A. & Meyer, A. S. A theory of lexical access in speech production. Behav. Brain Sci. 22, 1–38 (1999).
Räsänen, O., Doyle, G. & Frank, M. C. Unsupervised word discovery from speech using automatic segmentation into syllable-like units. Proc. Interspeech 2015, 3204–3208 (2015).
Williams, A. H. et al. Discovering precise temporal patterns in large-scale neural recordings through robust and interpretable time warping. Neuron 105, 246–259 (2020).
Roussel, P. et al. Observation and assessment of acoustic contamination of electrophysiological brain signals during speech production and sound perception. J. Neural Eng. 17, 056028 (2020).
Shah, N., Sahipjohn, N., Tambrahalli, V., Subramanian, R. & Gandhi, V. StethoSpeech: speech generation through a clinical stethoscope attached to the skin. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 8, 123 (2024).
Wairagkar, M. et al. Data for an instantaneous voice synthesis neuroprosthesis. Dryad https://doi.org/10.5061/dryad.2280gb64f (2025).