Wednesday, December 10, 2025
No menu items!
HomeNatureAn ancient recombination desert is a speciation supergene in placental mammals

An ancient recombination desert is a speciation supergene in placental mammals

  • Rossi, M. et al. Adaptive introgression of a visual preference gene. Science 383, 1368–1373 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Fontsere, C., de Manuel, M., Marques-Bonet, T. & Kuhlwilm, M. Admixture in mammals and how to understand its functional implications. Bioessays 41, e1900123 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fontaine, M. C. et al. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science 360, 1355–1358 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hibbins, M. & Hahn, M. Distinguishing between histories of speciation and introgression using genomic data. Bull. Soc. Syst. Biol. https://doi.org/10.18061/bssb.v3i1.9227 (2024).

    Article 

    Google Scholar
     

  • Schumer, M. et al. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 360, 656–660 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Edelman, N. B. & Mallet, J. Prevalence and adaptive impact of introgression. Annu. Rev. Genet. 55, 265–283 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Harrison, R. G. & Larson, E. L. Hybridization, introgression, and the nature of species boundaries. J. Hered. 105, 795–809 (2014).

    PubMed 

    Google Scholar
     

  • Mayr, E. Animal Species and Evolution (Harvard Univ. Press, 1963).

  • Bravo, G. A. et al. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 7, e6399 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G., Figueiró, H. V., Eizirik, E. & Murphy, W. J. Recombination-aware phylogenomics reveals the structured genomic landscape of hybridizing cat species. Mol. Biol. Evol. 36, 2111–2126 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley, N. M. et al. Karyotypic stasis and swarming influenced the evolution of viral tolerance in a species-rich bat radiation. Cell Genomics 4, 100482 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christmas, M. J. et al. Evolutionary constraint and innovation across hundreds of placental mammals. Science 380, eabn3943 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noor, M. A., Grams, K. L., Bertucci, L. A. & Reiland, J. Chromosomal inversions and the reproductive isolation of species. Proc. Natl Acad. Sci. USA 98, 12084–12088 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Nachman, M. W. & Payseur, B. A. Recombination rate variation and speciation: theoretical predictions and empirical results from rabbits and mice. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 409–421 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edelman, N. B. et al. Genomic architecture and introgression shape a butterfly radiation. Science 366, 594–599 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Burbrink, F. T., DeBaun, D., Foley, N. M. & Murphy, W. J. Recombination-aware phylogenomics. Trends Ecol. Evol. 9, 900–912 (2025).

    Article 

    Google Scholar
     

  • Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).

  • Adrion, J. R., Galloway, J. G. & Kern, A. D. Predicting the landscape of recombination using deep learning. Mol. Biol. Evol. 37, 1790–1808 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foley, N. M. et al. A genomic timescale for placental mammal evolution. Science 380, eabl8189 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pathak, S. & Stock, A. D. The X chromosomes of mammals: karylogical homology as revealed by banding techniques. Genetics 78, 703–714 (1974).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graves, J. A. M. Evolution of vertebrate sex chromosomes and dosage compensation. Nat. Rev. Genet. 17, 33–46 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rieseberg, L. H. Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16, 351–358 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Haenel, Q., Laurentino, T. G., Roesti, M. & Berner, D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol. Ecol. 27, 2477–2497 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Carneiro, M. et al. The genomic architecture of population divergence between subspecies of the European rabbit. PLoS Genet. 10, e1003519 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christmas, M. J. et al. Genetic barriers to historical gene flow between cryptic species of alpine bumblebees revealed by comparative population genomics. Mol. Biol. Evol. 38, 3126–3143 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hibbins, M. S. & Hahn, M. W. Phylogenomic approaches to detecting and characterizing introgression. Genetics 220, iyab173 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Schierup, M. H. & Hein, J. Consequences of recombination on traditional phylogenetic analysis. Genetics 156, 879–891 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brashear, W. A., Bredemeyer, K. R. & Murphy, W. J. Genomic architecture constrained placental mammal X chromosome evolution. Genome Res. 31, 1353–1365 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruger, A. N. et al. A neofunctionalized X-linked ampliconic gene family is essential for male fertility and equal sex ratio in mice. Curr. Biol. 29, 3699–3706 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davis, B. W. et al. Mechanisms underlying mammalian hybrid sterility in two feline interspecies models. Mol. Biol. Evol. 32, 2534–2546 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaelin, C. B. et al. Ancestry dynamics and trait selection in a designer cat breed. Curr. Biol. 34, 1506–1518 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jamieson, A. et al. Limited historical admixture between European wildcats and domestic cats. Curr. Biol. 33, 4751–4760 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ai, H., Huang, L. & Ren, J. Genetic diversity, linkage disequilibrium and selection signatures in Chinese and Western pigs revealed by genome-wide SNP markers. PLoS ONE 8, e56001 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Darlington, C. D. & Mather, K. Elements of Genetics (George Allen & Unwin Ltd, 1949).

  • Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. Heredity 113, 1–8 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berdan, E. L., Flatt, T., Kozak, G. M., Lotterhos, K. E. & Wielstra, B. Genomic architecture of supergenes: connecting form and function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 377, 20210192 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jay, P., Jeffries, D., Hartmann, F. E., Véber, A. & Giraud, T. Why do sex chromosomes progressively lose recombination?. Trends Genet. 40, 564–579 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lenormand, T. & Roze, D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science 375, 663–666 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Loda, A., Collombet, S. & Heard, E. Gene regulation in time and space during X-chromosome inactivation. Nat. Rev. Mol. Cell Biol. 23, 231–249 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sauteraud, R. et al. Inferring genes that escape X-chromosome inactivation reveals important contribution of variable escape genes to sex-biased diseases. Genome Res. 31, 1629–1637 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bansal, P., Kondaveeti, Y. & Pinter, S. F. Forged by DXZ4, FIRRE, and ICCE: How tandem repeats shape the active and inactive X chromosome. Front. Cell Dev. Biol. 7, 328 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Westervelt, N. & Chadwick, B. P. Characterization of the ICCE repeat in mammals reveals an evolutionary relationship with the DXZ4 macrosatellite through conserved CTCF binding motifs. Genome Biol. Evol. 10, 2190–2204 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bredemeyer, K. R. et al. Rapid macrosatellite evolution promotes X-linked hybrid male sterility in a feline interspecies cross. Mol. Biol. Evol. 38, 5588–5609 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, J. et al. The adult human testis transcriptional cell atlas. Cell Res. 28, 1141–1157 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Larson, E. L., Kopania, E. E. K. & Good, J. M. Spermatogenesis and the evolution of mammalian sex chromosomes. Trends Genet. 34, 722 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinnott-Armstrong, N., Naqvi, S., Rivas, M. & Pritchard, J. GWAS of three molecular traits highlights core genes and pathways alongside a highly polygenic background. eLife 10, e58615 (2020).

    Article 

    Google Scholar
     

  • Rice, W. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    Article 
    PubMed 

    Google Scholar
     

  • Chakrabarty, A., Chakraborty, S., Nandi, D. & Basu, A. Multivariate genetic architecture reveals testosterone-driven sexual antagonism in contemporary humans. Proc. Natl Acad. Sci. USA 121, e2404364121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mueller, J. L. et al. Independent specialization of the human and mouse X chromosomes for the male germ line. Nat. Genet. 45, 1083–1087 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bohutínská, M. & Peichel, C. L. Divergence time shapes gene reuse during repeated adaptation. Trends Ecol. Evol. 39, 396–407 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Lenormand, T. & Roze, D. A single theory for the evolution of sex chromosomes and the two rules of speciation. Science 389, eado9032 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Delmore, K. E., DaCosta, J. M. & Winker, K. Thrushes in love: Extensive gene flow, with differential resistance and selection, obscures and reveals the evolutionary history of a songbird clade. Mol. Ecol. https://doi.org/10.1111/mec.17635 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • de Queiroz, A. & Gatesy, J. The supermatrix approach to systematics. Trends Ecol. Evol. 22, 34–41 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Faircloth, B. C. et al. Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Syst. Biol. 61, 717–726 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Murat, F. et al. The molecular evolution of spermatogenesis across mammals. Nature 613, 308–316 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Moore, T. X centromeric drive may explain the prevalence of polycystic ovary syndrome and other conditions. Bioessays 46, e2400056 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • O’Brien, S. J., Graphodatsky, A. S. & Perelman, P. L. Atlas of Mammalian Chromosomes (Wiley Blackwell, 2020).

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • García-Alcalde, F. et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28, 2678–2679 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 11, 11.10.1–11.10.33 (2013).


    Google Scholar
     

  • Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl Acad. Sci. USA 99, 803–808 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilder, A. P. et al. The contribution of historical processes to contemporary extinction risk in placental mammals. Science 380, eabn5856 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovell, J. T. et al. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 11, e78526 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Porubsky, D. et al. SVbyEye: a visual tool to characterize structural variation among whole-genome assemblies. Bioinformatics 41, btaf332 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy, W. J., Foley, N. M., Bredemeyer, K. R., Gatesy, J. & Springer, M. S. Phylogenomics and the genetic architecture of the placental mammal radiation. Annu. Rev. Anim. Biosci. 9, 29–53 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinf. 15, 356 (2014).

    Article 

    Google Scholar
     

  • Harris, A. J., Foley, N. M., Williams, T. L. & Murphy, W. J. Tree House Explorer: a novel genome browser for phylogenomics. Mol. Biol. Evol. 39, msac130 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borowiec, M. L. AMAS: a fast tool for alignment manipulation and computing of summary statistics. PeerJ 4, e1660 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously evolved sequence alignments. Syst. Biol. 69, 249–264 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lemey, P., Salemi, M. & Vandamme, A.-M. The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing (Cambridge Univ. Press, 2009).

  • Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Feder, J. L. et al. Mayr, Dobzhansky, and Bush and the complexities of sympatric speciation in Rhagoletis. Proc. Natl Acad. Sci. USA 102, 6573–6580 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Pandey, R. S., Wilson Sayres, M. A. & Azad, R. K. Detecting evolutionary strata on the human X chromosome in the absence of gametologous Y-linked sequences. Genome Biol. Evol. 5, 1863–1871 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gel, B. & Serra, E. karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. Bioinformatics 33, 3088–3090 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer International Publishing, 2016).

  • Foley, N. An ancient recombination desert is a speciation supergene in placental mammals. Zenodo https://doi.org/10.5281/zenodo.15131984 (2025).

  • Li, G. et al. A high-resolution SNP array-based linkage map anchors a new domestic cat draft genome assembly and provides detailed patterns of recombination. G3 (Bethesda) 6, 1607–1616 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments