Friday, May 30, 2025
No menu items!
HomeNatureAir pollution modulates trends and variability of the global methane budget

Air pollution modulates trends and variability of the global methane budget

  • Szopa, S. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 6 (eds Masson-Delmotte, V. et al.) 817–922 (Cambridge Univ. Press, 2023).

  • Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Rigby, M. et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Z. et al. Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993–2017. Natl Sci. Rev. 9, nwab200 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qu, Z. et al. Inverse modeling of 2010–2022 satellite observations shows that inundation of the wet tropics drove the 2020–2022 methane surge. Proc. Natl Acad. Sci. 121, e2402730121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl Acad. Sci. 116, 2805–2813 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lelieveld, J., Gromov, S., Pozzer, A. & Taraborrelli, D. Global tropospheric hydroxyl distribution, budget and reactivity. Atmos. Chem. Phys. 16, 12477–12493 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kuklinska, K., Wolska, L. & Namiesnik, J. Air quality policy in the U.S. and the EU – a review. Atmos. Pollut. Res. 6, 129–137 (2015).

    Article 

    Google Scholar
     

  • Zhao, Y. et al. On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. Atmos. Chem. Phys. 20, 13011–13022 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naik, V. et al. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 5277–5298 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Voulgarakis, A. et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 13, 2563–2587 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Turner, A. J., Fung, I., Naik, V., Horowitz, L. W. & Cohen, R. C. Modulation of hydroxyl variability by ENSO in the absence of external forcing. Proc. Natl Acad. Sci. 115, 8931–8936 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, J., Naik, V. & Horowitz, L. W. Hydroxyl radical (OH) response to meteorological forcing and implication for the methane budget. Geophys. Res. Lett. 48, e2021GL094140 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stevenson, D. S. et al. Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmos. Chem. Phys. 20, 12905–12920 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nicely, J. M. et al. A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmos. Chem. Phys. 20, 1341–1361 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duncan, B. N. et al. Opinion: Beyond global means – novel space-based approaches to indirectly constrain the concentrations of and trends and variations in the tropospheric hydroxyl radical (OH). Atmos. Chem. Phys. 24, 13001–13023 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Baublitz, C. B. et al. An observation-based, reduced-form model for oxidation in the remote marine troposphere. Proc. Natl Acad. Sci 120, e2209735120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shutter, J. D. et al. Interannual changes in atmospheric oxidation over forests determined from space. Sci. Adv. 10, eadn1115 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Q., Fiore, A. M., Correa, G., Lamarque, J.-F. & Worden, H. The impact of internal climate variability on OH trends between 2005 and 2014. Environ. Res. Lett. 19, 064032 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wolfe, G. M. et al. Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Proc. Natl Acad. Sci. 116, 11171–11180 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderson, D. C. et al. Technical note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward assessing the feasibility of a global observation strategy. Atmos. Chem. Phys. 23, 6319–6338 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, D. C. et al. Trends and interannual variability of the hydroxyl radical in the remote tropics during boreal autumn inferred from satellite proxy data. Geophys. Res. Lett. 51, e2024GL108531 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Souri, A. H. et al. Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations. Atmos. Chem. Phys. 24, 8677–8701 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pimlott, M. A. et al. Investigating the global OH radical distribution using steady-state approximations and satellite data. Atmos. Chem. Phys. 22, 10467–10488 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nicely, J. M. et al. Changes in global tropospheric OH expected as a result of climate change over the last several decades. J. Geophys. Res. Atmos. 123, 10,774–710,795 (2018).

    Article 

    Google Scholar
     

  • Rowlinson, M. J. et al. Impact of El Niño–Southern Oscillation on the interannual variability of methane and tropospheric ozone. Atmos. Chem. Phys. 19, 8669–8686 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peng, S. et al. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 612, 477–482 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Naus, S. et al. Constraints and biases in a tropospheric two-box model of OH. Atmos. Chem. Phys. 19, 407–424 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Patra, P. K. et al. Methyl chloroform continues to constrain the hydroxyl (OH) variability in the troposphere. J. Geophys. Res. Atmos. 126, e2020JD033862 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thompson, R. L. et al. Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs). Atmos. Chem. Phys. 24, 1415–1427 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zheng, B. et al. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ. Res. Lett. 13, 044007 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zheng, B. et al. Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth Syst. Sci. Data 11, 1411–1436 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Wang, H. et al. Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. Atmos. Chem. Phys. 22, 13753–13782 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25, 441–475 (2000).

    Article 

    Google Scholar
     

  • Crippa, M. et al. GHG emissions of all world countries. Publications Office of the European Union https://doi.org/10.2760/953322 (2023).

  • Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miyazaki, K. et al. Global tropospheric ozone responses to reduced NOx emissions linked to the COVID-19 worldwide lockdowns. Sci. Adv. 7, eabf7460 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan, X., Thoning, K. W. & Dlugokencky, E. J. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Global Monitoring Laboratory https://doi.org/10.15138/P8XG-AA10 (2022).

  • Feng, L., Palmer, P. I., Parker, R. J., Lunt, M. F. & Bösch, H. Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021. Atmos. Chem. Phys. 23, 4863–4880 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qu, Z. et al. Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. Environ. Res. Lett. 17, 094003 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ziemke, J. R. et al. NASA satellite measurements show global-scale reductions in free tropospheric ozone in 2020 and again in 2021 during COVID-19. Geophys. Res. Lett. 49, e2022GL098712 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379, 912–917 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, E. V. et al. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmos. Chem. Phys. 14, 2679–2698 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Unger, N., Zheng, Y., Yue, X. & Harper, K. L. Mitigation of ozone damage to the world’s land ecosystems by source sector. Nat. Clim. Change 10, 134–137 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fleming, Z. et al. Tropospheric Ozone Assessment Report: present-day ozone distribution and trends relevant to human health. Elementa 6, 12 (2018).


    Google Scholar
     

  • Hou, X., Wild, O., Zhu, B. & Lee, J. Future tropospheric ozone budget and distribution over east Asia under a net-zero scenario. Atmos. Chem. Phys. 23, 15395–15411 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegglin, M. I. & Shepherd, T. G. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci. 2, 687–691 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations. Atmos. Chem. Phys. 23, 789–807 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Frith, S. M. et al. Recent changes in total column ozone based on the SBUV Version 8.6 Merged Ozone Data Set. J. Geophys. Res. Atmos. 119, 9735–9751 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ziemke, J. R. et al. Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res. 111, D19303 (2006).

    ADS 

    Google Scholar
     

  • Boersma, K. F. et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 11, 6651–6678 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Krotkov, N. A. et al. OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25 degree x 0.25 degree V3. NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC) https://doi.org/10.5067/Aura/OMI/DATA3007 (2019).

  • Inness, A. et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Agustí-Panareda, A. et al. Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020. Atmos. Chem. Phys. 23, 3829–3859 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Miyazaki, K. et al. Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018. Earth Syst. Sci. Data 12, 2223–2259 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, Y. et al. Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets. Atmos. Chem. Phys. 20, 9525–9546 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Geddes, J. A., Martin, R. V., Boys, B. L. & Donkelaar, A. V. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 124, 281–289 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, D. C. et al. Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers. Atmos. Chem. Phys. 21, 6481–6508 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shah, V. et al. Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements. Atmos. Chem. Phys. 23, 1227–1257 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Morgenstern, O. et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Tilmes, S. et al. Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). Geosci. Model Dev. 9, 1853–1890 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Molod, A., Takacs, L., Suarez, M. & Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8, 1339–1356 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Oman, L. D. et al. The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation. J. Geophys. Res. Atmos. 118, 965–976 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nielsen, J. E. et al. Chemical mechanisms and their applications in the Goddard Earth Observing System (GEOS) earth system model. J. Adv. Model. Earth Syst. 9, 3019–3044 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Granier, C. et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim. Change 109, 163 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duncan, B. N., Strahan, S. E., Yoshida, Y., Steenrod, S. D. & Livesey, N. Model study of the cross-tropopause transport of biomass burning pollution. Atmos. Chem. Phys. 7, 3713–3736 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Horowitz, L. W., Liang, J., Gardner, G. M. & Jacob, D. J. Export of reactive nitrogen from North America during summertime: sensitivity to hydrocarbon chemistry. J. Geophys. Res. Atmos. 103, 13451–13476 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period. Atmos. Chem. Phys. 19, 13701–13723 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emmerson, K. M. & Evans, M. J. Comparison of tropospheric gas-phase chemistry schemes for use within global models. Atmos. Chem. Phys. 9, 1831–1845 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sander, S. P. et al. Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 17. JPL publication (NASA, 2011).

  • Zhang, Z. et al. Enhanced response of global wetland methane emissions to the 2015–2016 El Niño-Southern Oscillation event. Environ. Res. Lett. 13, 074009 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, K. C. et al. Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature 585, 225–233 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wells, K. C. et al. Next-generation isoprene measurements from space: detecting daily variability at high resolution. J. Geophys. Res. Atmos. 127, e2021JD036181 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments