Thursday, April 3, 2025
No menu items!
HomeNatureAcoustic modes in M67 cluster stars trace deepening convective envelopes

Acoustic modes in M67 cluster stars trace deepening convective envelopes

  • Aerts, C. Probing the interior physics of stars through asteroseismology. Rev. Mod. Phys. 93, 015001 (2021).

    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • Li, T. et al. Asteroseismology of 3642 Kepler red giants: correcting the scaling relations based on detailed modeling. Astrophys. J. 927, 167 (2022).

    MATH 
    ADS 

    Google Scholar
     

  • Roxburgh, I. W. & Vorontsov, S. V. The ratio of small to large separations of acoustic oscillations as a diagnostic of the interior of solar-like stars. Astron. Astrophys. 411, 215–220 (2003).

    MATH 
    ADS 

    Google Scholar
     

  • White, T. R. et al. Asteroseismic diagrams from a survey of solar-like oscillations with Kepler. Astrophys. J. Lett. 742, L3 (2011).

    MATH 
    ADS 

    Google Scholar
     

  • Lund, M. N. et al. Standing on the shoulders of dwarfs: the Kepler Asteroseismic LEGACY sample. I. Oscillation mode parameters. Astrophys. J. 835, 172 (2017).

    MATH 
    ADS 

    Google Scholar
     

  • Kjeldsen, H. & Bedding, T. R. Amplitudes of stellar oscillations: the implications for asteroseismology. Astron. Astrophys. 293, 87–106 (1995).

    MATH 
    ADS 

    Google Scholar
     

  • Tassoul, M. Asymptotic approximations for stellar nonradial pulsations. Astrophys. J. Suppl. Ser. 43, 469–490 (1980).

    MATH 
    ADS 

    Google Scholar
     

  • Tassoul, M. Second-order asymptotic approximations for stellar nonradial acoustic modes. Astrophys. J. 358, 313–327 (1990).

    MATH 
    ADS 

    Google Scholar
     

  • Roxburgh, I. W. & Vorontsov, S. V. The seismology of stellar cores: a simple theoretical description of the ‘small frequency separations’. Mon. Not. R. Astron. Soc. 267, 297–302 (1994).

    MATH 
    ADS 

    Google Scholar
     

  • Christensen-Dalsgaard, J. The Sun as a fundamental calibrator of stellar evolution. In Proc. International Astronomical Union, Vol. 4, Symposium S258: The Ages of Stars, Vol. 4, 431–442 (Cambridge Univ. Press, 2009).

  • Christensen-Dalsgaard, J. A Hertzsprung-Russell diagram for stellar oscillations. In Proc. Symposium of International Astronomical Union, Advances in Helio- and Asteroseismology 123, 295–298 (Cambridge Univ. Press, 1988).

  • Aizenman, M., Smeyers, P. & Weigert, A. Avoided crossing of modes of non-radial stellar oscillations. Astron. Astrophys. 58, 41–46 (1977).

    MATH 
    ADS 

    Google Scholar
     

  • Benomar, O. et al. Properties of oscillation modes in subgiant stars observed by Kepler. Astrophys. J. 767, 158 (2013).

    MATH 
    ADS 

    Google Scholar
     

  • Mosser, B., Pinçon, C., Belkacem, K., Takata, M. & Vrard, M. Period spacings in red giants. III. Coupling factors of mixed modes. Astron. Astrophys. 600, A1 (2017).

    MATH 
    ADS 

    Google Scholar
     

  • Montalbán, J., Miglio, A., Noels, A., Scuflaire, R. & Ventura, P. Seismic diagnostics of red giants: first comparison with stellar models. Astrophys. J. Lett. 721, L182–L188 (2010).

    MATH 
    ADS 

    Google Scholar
     

  • Huber, D. et al. Asteroseismology of red giants from the first four months of Kepler data: global oscillation parameters for 800 stars. Astrophys. J. 723, 1607–1617 (2010).

    MATH 
    ADS 
    CAS 

    Google Scholar
     

  • Corsaro, E. et al. Asteroseismology of the open clusters NGC 6791, NGC 6811, and NGC 6819 from 19 months of Kepler photometry. Astrophys. J. 757, 190 (2012).

    ADS 

    Google Scholar
     

  • Ong, J. M. & Basu, S. Semianalytic expressions for the isolation and coupling of mixed modes. Astrophys. J. 898, 127 (2020).

    MATH 
    ADS 

    Google Scholar
     

  • Gilliland, R. L. et al. A search for solar-like oscillations in the stars of M67 with CCD ensemble photometry on a network of 4m telescopes. Astron. J. 106, 2441 (1993).

    MATH 
    ADS 

    Google Scholar
     

  • Stello, D. et al. The K2 M67 study: revisiting old friends with K2 reveals oscillating red giants in the open cluster M67. Astrophys. J. 832, 133 (2016).

    ADS 

    Google Scholar
     

  • Howell, S. B. et al. The K2 Mission: characterization and early results. Publ. Astron. Soc. Pac. 126, 398–408 (2014).

    MATH 
    ADS 

    Google Scholar
     

  • Reyes, C. et al. Isochrone fitting of the open cluster M67 in the era of Gaia and improved model physics. Mon. Not. R. Astron. Soc. 532, 2860–2874 (2024).

    MATH 
    CAS 

    Google Scholar
     

  • Salaris, M. & Cassisi, S. Evolution of Stars and Stellar Populations (Wiley, 2005).

  • Hekker, S. & Christensen-Dalsgaard, J. Giant star seismology. Astron. Astrophys. Rev. 25, 1 (2017).

    ADS 

    Google Scholar
     

  • Roxburgh, I. W. The ratio of small to large separations of stellar p-modes. Astron. Astrophys. 434, 665–669 (2005).

    MATH 
    ADS 

    Google Scholar
     

  • Roxburgh, I. W. & Vorontsov, S. V. On the use of the ratio of small to large separations in asteroseismic model fitting. Astron. Astrophys. 560, A2 (2013).

    MATH 
    ADS 

    Google Scholar
     

  • Cunha, M. S., Stello, K., Avelino, P. P., Christensen-Dalsgaard, J. & Townsend, R, H. D. Structural glitches near the cores of Red Giants Revealed by Oscillations in g-mode Period Spacings from Stellar Models. Astrophys. J. 805, 127 (2015).

    ADS 

    Google Scholar
     

  • Basu, S. & Chaplin, W. J. Asteroseismic Data Analysis: Foundations and Techniques (Princeton Univ. Press, 2017).

  • Lindsay, C. J., Ong, J. M. J. & Basu, S. Near-core acoustic glitches are not oscillatory: consequences for asteroseismic probes of convective boundary mixing. Astrophys. J. 950, 19 (2023).

    MATH 
    ADS 

    Google Scholar
     

  • Roxburgh, I. in SCORe’96 : Solar Convection and Oscillations and Their Relationship (eds Pijpers, F. P. et al.) 225, 23–50 (Springer, 1997).

  • Choi, J. et al. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    MATH 
    ADS 

    Google Scholar
     

  • Khan, S. et al. The red-giant branch bump revisited: constraints on envelope overshooting in a wide range of masses and metallicities. Astrophys. J. 859, 156 (2018).

    MATH 
    ADS 

    Google Scholar
     

  • Lindsay, C. J., Ong, J. M. J. & Basu, S. Mixed-mode asteroseismology of red giant stars through the luminosity bump. Astrophys. J. 931, 116 (2022).

    MATH 
    ADS 

    Google Scholar
     

  • Miglio, A. Asteroseismology of red giants as a tool for studying stellar populations: first steps. In Red Giants as Probes of the Structure and Evolution of the Milky Way. Astrophysics and Space Science Proceedings (eds Miglio, A. et al.) Vol. 26, 11 (Springer, 2012).

  • Miglio, A. et al. Age dissection of the Milky Way discs: red giants in the Kepler field. Astron. Astrophys. 645, A85 (2021).

    MATH 
    CAS 

    Google Scholar
     

  • Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    MATH 
    ADS 

    Google Scholar
     

  • Chontos, A., Huber, D., Sayeed, M. & Yamsiri, P. pySYD: automated measurements of global asteroseismic parameters. J. Open Source Softw. 7, 3331 (2022).

    ADS 

    Google Scholar
     

  • Huber, D. et al. Automated extraction of oscillation parameters for Kepler observations of solar-type stars. Commun. Asteroseismol. 160, 74 (2009).

    MATH 
    ADS 

    Google Scholar
     

  • Kallinger, T. Release note: massive peak bagging of red giants in the Kepler field. Preprint at https://doi.org/10.48550/arXiv.1906.09428 (2019).

  • Townsend, R. H. D. & Teitler, S. A. gyre: an open-source stellar oscillation code based on a new Magnus Multiple Shooting scheme. Mon. Not. R. Astron. Soc. 435, 3406–3418 (2013).

    MATH 
    ADS 

    Google Scholar
     

  • Ball, W. H. & Gizon, L. A new correction of stellar oscillation frequencies for near-surface effects. Astron. Astrophys. 568, A123 (2014).

    MATH 
    ADS 

    Google Scholar
     

  • Silva Aguirre, V. et al. Standing on the shoulders of dwarfs: the Kepler asteroseismic LEGACY sample. II. Radii, masses, and ages. Astrophys. J. 835, 173 (2017).

    ADS 

    Google Scholar
     

  • White, T. R. et al. Calculating asteroseismic diagrams for solar-like oscillations. Astrophys. J. 743, 161 (2011).

    MATH 
    ADS 

    Google Scholar
     

  • Roxburgh, I. W. Asteroseismology of solar and stellar models. Astrophys. Space Sci. 328, 3–11 (2010).

    MATH 
    ADS 

    Google Scholar
     

  • Mosser, B. et al. Characterization of the power excess of solar-like oscillations in red giants with Kepler. Astron. Astrophys. 537, A30 (2012).

    MATH 

    Google Scholar
     

  • Gough, D. O. & Thompson, M. J. in Solar Interior and Atmosphere (eds Cox, A. N. et al.) 519–561 (Univ. Arizona Press, 1991).

  • García Pérez, A. E. et al. ASPCAP: the APOGEE Stellar Parameter and Chemical Abundances Pipeline. Astron. J. 151, 144 (2016).

    MATH 
    ADS 

    Google Scholar
     

  • Jönsson, H. et al. APOGEE data and spectral analysis from SDSS data release 16: seven years of observations including first results from APOGEE-South. Astron. J. 160, 120 (2020).

    MATH 
    ADS 

    Google Scholar
     

  • Reyes, C. Dataset for manuscript “Acoustic modes in M67 cluster stars trace deepening convective envelopes”. Zenodo https://doi.org/10.5281/zenodo.12617071 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments