Thursday, August 14, 2025
No menu items!
HomeNatureAcidic oxygen reduction by single-atom Fe catalysts on curved supports

Acidic oxygen reduction by single-atom Fe catalysts on curved supports

  • Xie, X. et al. Performance enhancement and degradation mechanism identification of a single-atom Co–N–C catalyst for proton exchange membrane fuel cells. Nat. Catal. 3, 1044–1054 (2020).

    CAS 

    Google Scholar
     

  • Jiao, K. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 595, 361–369 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Y. et al. Tuning the thermal activation atmosphere breaks the activity–stability trade-off of Fe–N–C oxygen reduction fuel cell catalysts. Nat. Catal. 6, 1215–1227 (2023).

    CAS 

    Google Scholar
     

  • Bashyam, R. & Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63–66 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Identification of durable and non-durable FeNx sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 4, 10–19 (2021).


    Google Scholar
     

  • Chung, H. T. et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao, L. et al. Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nat. Mater. 20, 1385–1391 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mehmood, A. et al. High loading of single atomic iron sites in Fe–NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 5, 311–323 (2022).

    CAS 

    Google Scholar
     

  • Jiao, Y. et al. Three-dimensional Fe single-atom catalyst for high-performance cathode of Zn–air batteries. Nano Lett. 22, 7386–7393 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts. Adv. Mater. 35, 2300907 (2023).

    CAS 

    Google Scholar
     

  • Zhang, H., Jin, X., Lee, J. & Wang, X. Tailoring of active sites from single to dual atom sites for highly efficient electrocatalysis. ACS Nano 16, 17572–17592 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, D. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 4, 512–518 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Han, G. et al. Substrate strain tunes operando geometric distortion and oxygen reduction activity of CuN2C2 single-atom sites. Nat. Commun. 12, 6335 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. 60, 22722–22728 (2021).

    CAS 

    Google Scholar
     

  • Cheng, X. et al. Nano-geometric deformation and synergistic Co nanoparticles—Co–N4 composite sites for proton exchange membrane fuel cells. Energy Environ. Sci. 14, 5958–5967 (2021).

    CAS 

    Google Scholar
     

  • Hu, H., Zhang, P., Xiao, B. & Mi, J. Substrate strain engineering of single-atomic Sn-N4 sites embedded in various carbon matrixes for bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interfaces 15, 23170–23184 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Quasi-solid-state Zn–air batteries with an atomically dispersed cobalt electrocatalyst and organohydrogel electrolyte. Nat. Commun. 13, 3689 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bae, G. et al. Unravelling the complex causality behind Fe–N–C degradation in fuel cells. Nat. Catal. 6, 1140–1150 (2023).

    CAS 

    Google Scholar
     

  • Kumar, K., Dubau, L., Jaouen, F. & Maillard, F. Review on the degradation mechanisms of metal–NC catalysts for the oxygen reduction reaction in acid electrolyte: current understanding and mitigation approaches. Chem. Rev. 123, 9265–9326 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy 7, 652–663 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Bai, J. et al. Monosymmetric Fe–N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification. Nat. Commun. 15, 4219 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Z. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, K. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017).

    CAS 

    Google Scholar
     

  • Ejima, H. et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science 341, 154–157 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Atomic scale evolution of graphitic shells growth via pyrolysis of cobalt phthalocyanine. Adv. Mater. Interfaces 7, 2001112 (2020).

    CAS 

    Google Scholar
     

  • Chen, G. et al. Zinc-mediated template synthesis of Fe–N–C electrocatalysts with densely accessible Fe–Nx active sites for efficient oxygen reduction. Adv. Mater. 32, 1907399 (2020).

    CAS 

    Google Scholar
     

  • Zhao, L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10, 1278 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, Q. et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 9, 12496–12505 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Z. et al. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nat. Catal. 4, 615–622 (2021).

    CAS 

    Google Scholar
     

  • Kramm, U. I., Lefèvre, M., Larouche, N., Schmeisser, D. & Dodelet, J. P. Correlations between mass activity and physicochemical properties of Fe/N/C catalysts for the ORR in PEM fuel cell via 57Fe Mossbauer spectroscopy and other techniques. J. Am. Chem. Soc. 136, 978–985 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, L. et al. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction. Proc. Natl Acad. Sci. USA 115, 6626–6631 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 6, eabb6833 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, X. et al. Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).

    CAS 

    Google Scholar
     

  • Hong, Y. et al. Molecular control of carbon-based oxygen reduction electrocatalysts through metal macrocyclic complexes functionalization. Adv. Energy Mater. 11, 2100866 (2021).

    CAS 

    Google Scholar
     

  • Sun, Y. et al. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun. 12, 5984 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc–air battery and hydrogen–air fuel cell. Nat. Commun. 9, 5422 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Operando deconvolution of the degradation mechanisms of iron–nitrogen–carbon catalysts in proton exchange membrane fuel cells. Energy Environ. Sci. 16, 3792–3802 (2023).

    CAS 

    Google Scholar
     

  • Joly, Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys. Rev. B 63, 125120 (2001).

    ADS 

    Google Scholar
     

  • Rehr, J. J. & Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Benfatto, M., Congiu-Castellano, A., Daniele, A. & Della Longa, S. MXAN: a new software procedure to perform geometrical fitting of experimental XANES spectra. J. Synchrotron Radiat. 8, 267–269 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Benfatto, M. et al. MXAN: a new program for ab-initio structural quantitative analysis of XANES experiments. Comput. Phys. Commun. 265, 107992 (2021).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    ADS 
    MathSciNet 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments