Wednesday, January 28, 2026
No menu items!
HomeNatureAccurate determination of the 3D atomic structure of amorphous materials

Accurate determination of the 3D atomic structure of amorphous materials

  • Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlson, D. E. & Wronski, C. R. Amorphous silicon solar cell. Appl. Phys. Lett. 28, 671–673 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, W. H., Dong, C. & Shek, C. H. Bulk metallic glasses. Mater. Sci. Eng. R Rep. 44, 45–89 (2004).

    Article 

    Google Scholar
     

  • Li, H. F. & Zheng, Y. F. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 36, 1–20 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Esmaeil Zadeh, I. et al. Superconducting nanowire single-photon detectors: a perspective on evolution, state-of-the-art, future developments, and applications. Appl. Phys. Lett. 118, 190502 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, B. et al. Down-converted photon pairs in a high-Q silicon nitride microresonator. Nature 639, 922–927 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Warren, B. E. & Biscob, J. Fourier analysis of X-ray patterns of soda-silica glass. J. Am. Ceram. Soc. 21, 259–265 (1938).

    Article 
    CAS 

    Google Scholar
     

  • Frank, F. C. Supercooling of liquids. Proc. R. Soc. Lond. A 215, 43–46 (1952).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bernal, J. D. Geometry of the structure of monatomic liquids. Nature 185, 68–70 (1960).

    Article 
    ADS 

    Google Scholar
     

  • Finney, J. L. Random packings and structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A 319, 479–493 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGreevy, R. L. & Pusztai, L. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol. Simul. 1, 359–367 (1988).

    Article 

    Google Scholar
     

  • Elliott, S. R. Medium-range structural order in covalent amorphous solids. Nature 354, 445–452 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kelton, K. F. et al. First X-ray scattering studies on electrostatically levitated metallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 3, 697–702 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Y. Q. & Ma, E. Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater Sci. 56, 379–473 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hwang, J. et al. Nanoscale structure and structural relaxation in Zr50Cu45A15 bulk metallic glass. Phys. Rev. Lett. 108, 195505 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Treacy, M. M. J. & Borisenko, K. B. The local structure of amorphous silicon. Science 335, 950–953 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirata, A. et al. Geometric frustration of icosahedron in metallic glasses. Science 341, 376–379 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lan, S. et al. A medium-range structure motif linking amorphous and crystalline states. Nat. Mater. 20, 1347–1352 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Y. Three-dimensional atomic packing in amorphous solids with liquid-like structure. Nat. Mater. 21, 95–102 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miao, J. Computational microscopy with coherent diffractive imaging and ptychography. Nature 637, 281–295 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Busch, R., Rez, P., Treacy, M. M. J. & Zuo, J.-M. Limit of atomic resolution tomography reconstruction of amorphous nanoparticles. Nature https://doi.org/10.1038/s41586-025-09924-w (2026).

    Article 

    Google Scholar
     

  • Miao, J., Ercius, P. & Billinge, S. J. L. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, C.-C. et al. Three-dimensional imaging of dislocations in a nanoparticle at atomic resolution. Nature 496, 74–77 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Goris, B. et al. Measuring lattice strain in three dimensions through electron microscopy. Nano Lett. 15, 6996–7001 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542, 75–79 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, R. et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. 14, 1099–1103 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, X. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat. Mater. 19, 867–873 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, X. Capturing 3D atomic defects and phonon localization at the 2D heterostructure interface. Sci. Adv. 7, eabi6699 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moniri, S. Three-dimensional atomic structure and local chemical order of medium and high-entropy nanoalloys. Nature 624, 564–569 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, H. et al. Direct strain correlations at the single-atom level in three-dimensional core–shell interface structures. Nat. Commun. 13, 5957 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. Probing the atomically diffuse interfaces in Pd@Pt core–shell nanoparticles in three dimensions. Nat. Commun. 14, 2934 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Atomic-scale identification of the active sites of oxygen reduction nanocatalysts. Nat. Catal. 7, 796–806 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Madsen, J. & Susi, T. The abTEM code: transmission electron microscopy from first principles. Open Res. Eur. 1, 24 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Pham, M., Yuan, Y., Rana, A., Osher, S. & Miao, J. Accurate real space iterative reconstruction (RESIRE) algorithm for tomography. Sci Rep. 13, 5624 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weyland, M. & Midgley, P. A. Electron tomography. Mater. Today 7, 32–40 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miao, J., Förster, F. & Levi, O. Equally sloped tomography with oversampling reconstruction. Phys. Rev. B 72, 052103 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Pryor, A. Jr et al. GENFIRE: a generalized Fourier iterative reconstruction algorithm for high-resolution 3D imaging. Sci Rep. 7, 10409 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, D. J. et al. Ptychographic atomic electron tomography: Towards three-dimensional imaging of individual light atoms in materials. Phys. Rev. B 102, 174101 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pelz, P. M. et al. Solving complex nanostructures with ptychographic atomic electron tomography. Nat. Commun. 14, 7906 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 29, 1606–1614 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Z. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372, 826–831 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Leary, C. M. et al. Three-dimensional structure of buried heterointerfaces revealed by multislice ptychography. Phys. Rev. Appl. 22, 014016 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Raines, K. S. et al. Three-dimensional structure determination from a single view. Nature 463, 214–217 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogers, S. S., Waigh, T. A., Zhao, X. & Lu, J. R. Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight. Phys. Biol. 4, 220 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Cowley, J. M. & Moodie, A. F. The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Crystallogr. 10, 609–619 (1957).

    Article 
    CAS 

    Google Scholar
     

  • Goodman, P. & Moodie, A. F. Numerical evaluations of N-beam wave functions in electron scattering by the multi-slice method. Acta Crystallogr. A 30, 280–290 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Miao, J., Sayre, D. & Chapman, H. N. Phase retrieval from the magnitude of the Fourier transform of nonperiodic objects. J. Opt. Soc. Am. A 15, 1662–1669 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Wakonig, K. et al. PtychoShelves, a versatile high-level framework for high-performance analysis of ptychographic data. J. Appl. Crystallogr. 53, 574–586 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, E. H. R., Usov, I., Diaz, A., Menzel, A. & Guizar-Sicairos, M. X-ray ptychography with extended depth of field. Opt. Express 24, 29089–29108 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • University of California, Los Angeles. Supplementary-data-codes. Zenodo https://doi.org/10.5281/zenodo.17445110 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments