Fabian, D., Jäger, C., Henning, T., Dorschner, J. & Mutschke, H. Steps toward interstellar silicate mineralogy. V. Thermal evolution of amorphous magnesium silicates and silica. Astron. Astrophys. 364, 282–292 (2000).
Hallenbeck, S. L., Nuth, J. A. III & Daukantas, P. L. Mid-infrared spectral evolution of amorphous magnesium silicate smokes annealed in vacuum: comparison to cometary spectra. Icarus 131, 198–209 (1998).
Hanner, M. S., Lynch, D. K. & Russell, R. W. The 8–13 micron spectra of comets and the composition of silicate grains. Astrophys. J. 425, 274 (1994).
Hayward, T. L., Hanner, M. S. & Sekanina, Z. Thermal infrared imaging and spectroscopy of comet Hale-Bopp (C/1995 O1). Astrophys. J. 538, 428–455 (2000).
Wooden, D. H. Comet grains: their IR emission and their relation to ISm grains. Earth Moon Planets 89, 247–287 (2002).
Shinnaka, Y. et al. Mid-infrared spectroscopic observations of comet 17P/Holmes immediately after its great outburst in 2007 October. Astron. J. 156, 242 (2018).
Lee, Y.-H. et al. Young faithful: the eruptions of EC 53 as it cycles through filling and draining the inner disk. Astrophys. J. 903, 5 (2020).
Pascucci, I. et al. The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations. Nat. Astron. 9, 81–89 (2025).
Giacalone, S., Teitler, S., Königl, A., Krijt, S. & Ciesla, F. J. Dust transport and processing in centrifugally driven protoplanetary disk winds. Astrophys. J. 882, 33 (2019).
Lee, J.-E., Bergin, E. A. & Nomura, H. The solar nebula on fire: a solution to the carbon deficit in the inner solar system. Astrophys. J. Lett. 710, L21–L25 (2010).
Anderson, D. E. et al. Destruction of refractory carbon in protoplanetary disks. Astrophys. J. 845, 13 (2017).
Bouwman, J. et al. Processing of silicate dust grains in Herbig Ae/Be systems. Astron. Astrophys. 375, 950–962 (2001).
van Boekel, R. et al. Grain growth in the inner regions of Herbig Ae/Be star disks. Astron. Astrophys. 400, L21–L24 (2003).
van Boekel, R. et al. A 10 μm spectroscopic survey of Herbig Ae star disks: grain growth and crystallization. Astron. Astrophys. 437, 189–208 (2005).
Juhász, A. et al. Dust evolution in protoplanetary disks around Herbig Ae/Be stars—the Spitzer view. Astrophys. J. 721, 431–455 (2010).
Meeus, G., Sterzik, M., Bouwman, J. & Natta, A. Mid-IR spectroscopy of T Tauri stars in Chamealeon I: evidence for processed dust at the earliest stages. Astron. Astrophys. 409, L25–L29 (2003).
Ábrahám, P. et al. Episodic formation of cometary material in the outburst of a young Sun-like star. Nature 459, 224–226 (2009).
Olofsson, J. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. IV. Crystalline silicates. Astron. Astrophys. 507, 327–345 (2009).
Furlan, E. et al. The Spitzer infrared spectrograph survey of T Tauri Stars in Taurus. Astrophys. J. Suppl. Ser. 195, 3 (2011).
Jang, H. et al. Dust mineralogy and variability of the inner PDS 70 disk: insights from JWST/MIRI MRS and Spitzer IRS observations. Astron. Astrophys. 691, A148 (2024).
Apai, D. et al. The onset of planet formation in brown dwarf disks. Science 310, 834–836 (2005).
Raymond, S. N. & Morbidelli, A. in Demographics of Exoplanetary Systems, Lecture Notes of the 3rd Advanced School on Exoplanetary Science (eds Biazzo, K. et al.) Vol. 466 of Astrophysics and Space Science Library, 3–82 (Springer, 2022).
Nuth, J. A. III & Johnson, N. M. Crystalline silicates in comets: how did they form? Icarus 180, 243–250 (2006).
Maaskant, K. M. et al. Location and sizes of forsterite grains in protoplanetary disks. Interpretation from the Herschel DIGIT programme. Astron. Astrophys. 574, A140 (2015).
Pilipp, W., Hartquist, T. W., Morfill, G. E. & Levy, E. H. Chondrule formation by lightning in the protosolar nebula? Astron. Astrophys. 331, 121–146 (1998).
Harker, D. E. & Desch, S. J. Annealing of silicate dust by nebular shocks at 10 au. Astrophys. J. Lett. 565, L109–L112 (2002).
Bae, J., Hartmann, L., Zhu, Z. & Nelson, R. P. Accretion outbursts in self-gravitating protoplanetary disks. Astrophys. J. 795, 61 (2014).
Park, W. et al. Quantifying variability of young stellar objects in the mid-infrared over 6 years with the near-Earth object wide-field infrared survey explorer. Astrophys. J. 920, 132 (2021).
Sicilia-Aguilar, A. et al. The long-lived disks in the η Chamaeleontis cluster. Astrophys. J. 701, 1188–1203 (2009).
Oliveira, I. et al. On the evolution of dust mineralogy, from protoplanetary disks to planetary systems. Astrophys. J. 734, 51 (2011).
Quanz, S. P. et al. Evolution of dust and ice features around FU Orionis objects. Astrophys. J. 668, 359–383 (2007).
Yang, Y.-L. et al. CORINOS. I. JWST/MIRI spectroscopy and imaging of a Class 0 protostar IRAS 15398–3359. Astrophys. J. Lett. 941, L13 (2022).
Lee, J.-E. et al. The ice composition in the disk around V883 Ori revealed by its stellar outburst. Nat. Astron. 3, 314–319 (2019).
Lee, J.-E. et al. Complex organic molecules in a very young hot Corino, HOPS 373SW. Astrophys. J. 956, 43 (2023).
Lee, J.-E. et al. A natural laboratory for astrochemistry: the variable protostar B335. Astrophys. J. Lett. 978, L3 (2025).
Muzerolle, J., Furlan, E., Flaherty, K., Balog, Z. & Gutermuth, R. Pulsed accretion in a variable protostar. Nature 493, 378–380 (2013).
Yoo, H. et al. The JCMT Transient Survey: detection of submillimeter variability in a class I protostar EC 53 in Serpens Main. Astrophys. J. 849, 69 (2017).
Ortiz-León, G. N. et al. The Gould’s Belt Distances Survey (GOBELINS). I. Trigonometric parallax distances and depth of the Ophiuchus complex. Astrophys. J. 834, 141 (2017).
Hodapp, K. W. Proper motions of H2 jets and variability of young stars in the Serpens NW region. Astron. J. 118, 1338–1346 (1999).
Hodapp, K. W., Chini, R., Watermann, R. & Lemke, R. Eruptive variable stars and outflows in Serpens NW. Astrophys. J. 744, 56 (2012).
Francis, L. et al. Accretion burst echoes as probes of protostellar environments and episodic mass assembly. Astrophys. J. 937, 29 (2022).
Baek, G. et al. Radiative transfer modeling of EC 53: an episodically accreting class I young stellar object. Astrophys. J. 895, 27 (2020).
Lee, S., Lee, J.-E., Aikawa, Y., Herczeg, G. & Johnstone, D. The circumstellar environment around the embedded protostar EC 53. Astrophys. J. 889, 20 (2020).
Bonnell, I. & Bastien, P. A binary origin for FU Orionis stars. Astrophys. J. Lett. 401, L31 (1992).
Nayakshin, S. & Lodato, G. Fu Ori outbursts and the planet-disc mass exchange. Mon. Not. R. Astron. Soc. 426, 70–90 (2012).
Jang, H., Waters, R., Kamp, I. & Dullemond, C. P. Spatial distribution of crystalline silicates in protoplanetary disks: How to interpret mid-infrared observations. Astron. Astrophys. 687, A275 (2024).
Dominik, C., Min, M. & Tazaki, R. OpTool: command-line driven tool for creating complex dust opacities. Astrophysics Source Code Library, record ascl:2104.010 (ASCL, 2021).
Olofsson, J. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition. Astron. Astrophys. 520, A39 (2010).
Lu, C. X. et al. Trends in silicates in the β Pictoris disk. Astrophys. J. 933, 54 (2022).
Lenzuni, P., Gail, H.-P. & Henning, T. Dust evaporation in protostellar cores. Astrophys. J. 447, 848 (1995).
Shu, F. H., Shang, H. & Lee, T. Toward an astrophysical theory of chondrites. Science 271, 1545–1552 (1996).
Shu, F. H., Shang, H., Gounelle, M., Glassgold, A. E. & Lee, T. The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J. 548, 1029–1050 (2001).
Juhász, A. et al. The 2008 Outburst of EX Lup—Silicate Crystals in Motion. Astrophys. J. 744, 118 (2012).
Cecil, M. & Flock, M. Variability of the inner dead zone edge in 2D radiation hydrodynamic simulations. Astron. Astrophys. 692, A171 (2024).
Kóspál, Á. et al. Time-resolved protoplanetary disk physics in DQ Tau with JWST. Astron. Astrophys. 703, A20 (2025).
Zagaria, F., Clarke, C. J., Rosotti, G. P. & Manara, C. F. Stellar multiplicity affects the correlation between protoplanetary disc masses and accretion rates: binaries explain high accretors in Upper Sco. Mon. Not. R. Astron. Soc. 512, 3538–3550 (2022).
Green, J. D. et al. Spitzer IRS observations of FU Orionis objects. Astrophys. J. 648, 1099–1109 (2006).
Kóspál, Á. et al. Grain growth in newly discovered young eruptive stars. Astrophys. J. Lett. 895, L48 (2020).
Glauser, A. M. et al. Dust amorphization in protoplanetary disks. Astron. Astrophys. 508, 247–257 (2009).
Fischer, W. J. et al. Accretion variability as a guide to stellar mass assembly. In Proc. Protostars and Planets VII (eds Inutsuka, S. et al.) Vol. 534 of Astronomical Society of the Pacific Conference Series, 355 (Astronomical Society of the Pacific, 2023).
Mairs, S. et al. The JCMT Transient Survey: six year summary of 450/850 μm protostellar variability and calibration pipeline version 2.0. Astrophys. J. 966, 215 (2024).
Green, J. D. et al. Why are (almost) all the protostellar outflows aligned in Serpens Main? Astrophys. J. 972, 5 (2024).
Bushouse, H. et al. JWST Calibration Pipeline. Zenodo https://doi.org/10.5281/zenodo.7577320 (2023).
Greenfield, P. & Miller, T. The Calibration Reference Data System. Astron. Comput. 16, 41–53 (2016).
Bradley, L. et al. astropy/photutils: 2.0.2. Zenodo https://doi.org/10.5281/zenodo.13989456 (2024).
Law, D. R. et al. A 3D drizzle algorithm for JWST and practical application to the MIRI medium resolution spectrometer. Astron. J. 166, 45 (2023).
Kim, J., Lee, J.-E., Kim, C.-H., Jeong, W.-S. & Yang, Y.-L. Near- to mid-infrared spectroscopic study of ice analysis using the AKARI/IRC and Spitzer/IRS spectra. J. Korean Astron. Soc. 58, 111–129 (2025).
Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).
Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K. & Denzmore, P. Interpreting spectral energy distributions from young stellar objects. I. A grid of 200,000 YSO model SEDs. Astrophys. J. Suppl. Ser. 167, 256–285 (2006).
Zeidler, S., Posch, T. & Mutschke, H. Optical constants of refractory oxides at high temperatures. Mid-infrared properties of corundum, spinel, and α-quartz, potential carriers of the 13 μm feature. Astron. Astrophys. 553, A81 (2013).
Min, M., Hovenier, J. W. & de Koter, A. Modeling optical properties of cosmic dust grains using a distribution of hollow spheres. Astron. Astrophys. 432, 909–920 (2005).
Erb, D. pybaselines: a Python library of algorithms for the baseline correction of experimental data. Zenodo https://doi.org/10.5281/zenodo.10676584 (2024).
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).
Foreman-Mackey, D. corner.py: scatterplot matrices in Python. J. Open Source Softw. 1, 24 (2016).
Klarmann, L., Ormel, C. W. & Dominik, C. Radial and vertical dust transport inhibit refractory carbon depletion in protoplanetary disks. Astron. Astrophys. 618, L1 (2018).
Dullemond, C. P. et al. RADMC-3D: a multi-purpose radiative transfer tool. Astrophysics Source Code Library, record ascl:1202.015 (ASCL, 2012).
Dullemond, C. P. & Monnier, J. D. The inner regions of protoplanetary disks. Annu. Rev. Astron. Astrophys. 48, 205–239 (2010).

