Smail, I., Ivison, R. J. & Blain, A. W. A deep sub-millimeter survey of lensing clusters: a new window on galaxy formation and evolution. Astrophys. J. 490, L5âL8 (1997).
Hughes, D. H. et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 394, 241â247 (1998).
Smail, I. et al. The rest-frame optical properties of SCUBA galaxies. Astrophys. J. 616, 71â85 (2004).
Walter, F. et al. The intense starburst HDF 850.1 in a galaxy overdensity at z â 5.2 in the Hubble Deep Field. Nature 486, 233â236 (2012).
Wang, T. et al. A dominant population of optically invisible massive galaxies in the early Universe. Nature 572, 211â214 (2019).
Hodge, J. A. & da Cunha, E. High-redshift star formation in the Atacama Large Millimetre/submillimetre Array era. R. Soc. Open Sci. 7, 200556 (2020).
Menci, N. et al. High-redshift galaxies from early JWST observations: constraints on dark energy models. Astrophys. J. 938, L5 (2022).
Boylan-Kolchin, M. Stress testing ÎCDM with high-redshift galaxy candidates. Nat. Astron. 7, 731â735 (2023).
Lovell, C. C. et al. Extreme value statistics of the halo and stellar mass distributions at high redshift: are JWST results in tension with ÎCDM? Mon. Not. R. Astron. Soc. 518, 2511â2520 (2023).
Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ~ 10â12 revealed by JWST. Astrophys. J. 940, L14 (2022).
Castellano, M. et al. Early results from GLASS-JWST. III. Galaxy candidates at z ~ 9â15. Astrophys. J. 938, L15 (2022).
Labbé, I. et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616, 266â269 (2023).
Pérez-González, P. G. et al. Life beyond 30: probing the â20 < MUV < â17 luminosity function at 8 < z < 13 with the NIRCam parallel field of the MIRI Deep Survey. Astrophys. J. 951, L1 (2023).
Finkelstein, S. L. et al. The complete CEERS early Universe galaxy sample: a surprisingly slow evolution of the space density of bright galaxies at z ~ 8.5â14.5. Astrophys. J. Lett. 969, L2 (2024).
Willott, C. J. et al. A steep decline in the galaxy space density beyond redshift 9 in the CANUCS UV luminosity function. Astrophys. J. 966, 74 (2024).
McLeod, D. J. et al. The galaxy UV luminosity function at z ~ 11 from a suite of public JWST ERS, ERO, and Cycle-1 programs. Mon. Not. R. Astron. Soc. 527, 5004â5022 (2024).
Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415â486 (2014).
Oesch, P. A. et al. The JWST FRESCO survey: legacy NIRCam/grism spectroscopy and imaging in the two GOODS fields. Mon. Not. R. Astron. Soc. 525, 2864â2874 (2023).
Giavalisco, M. et al. The Great Observatories Origins Deep Survey: initial results from optical and near-infrared imaging. Astrophys. J. 600, L93âL98 (2004).
Fudamoto, Y. et al. Normal, dust-obscured galaxies in the epoch of reionization. Nature 597, 489â492 (2021).
Xiao, M.-Y. et al. The hidden side of cosmic star formation at z > 3. Bridging optically dark and Lyman-break galaxies with GOODS-ALMA. Astron. Astrophys. 672, A18 (2023).
Barrufet, L. et al. Unveiling the nature of infrared bright, optically dark galaxies with early JWST data. Mon. Not. R. Astron. Soc. 522, 449â456 (2023).
Pérez-González, P. G. et al. CEERS key paper. IV. A triality in the nature of HST-dark galaxies. Astrophys. J. 946, L16 (2023).
Whitaker, K. E. et al. The Hubble Legacy Field GOODS-S photometric catalog. Astrophys. J. Suppl. Ser. 244, 16 (2019).
Rieke, M. J. et al. JADES initial data release for the Hubble Ultra Deep Field: revealing the faint infrared sky with deep JWST NIRCam imaging. Astrophys. J. Suppl. Ser. 269, 16 (2023).
Carnall, A. C. et al. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379â4401 (2018).
Boquien, M. et al. CIGALE: a Python code investigating galaxy emission. Astron. Astrophys. 622, A103 (2019).
Planck Collaboration Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Moster, B. P., Naab, T. & White, SimonD. M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121â3138 (2013).
Moster, B. P., Naab, T. & White, SimonD. M. EMERGEâan empirical model for the formation of galaxies since z ~ 10. Mon. Not. R. Astron. Soc. 477, 1822â1852 (2018).
Tacchella, S. et al. A redshift-independent efficiency model: star formation and stellar masses in dark matter halos at z â³ 4. Astrophys. J. 868, 92 (2018).
Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077â4106 (2018).
Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435â487 (2018).
Shuntov, M. et al. COSMOS2020: cosmic evolution of the stellar-to-halo mass relation for central and satellite galaxies up to z ~ 5. Astron. Astrophys. 664, A61 (2022).
Riechers, D. A. et al. COLDz: a high space density of massive dusty starburst galaxies ~ 1 billion years after the Big Bang. Astrophys. J. 895, 81 (2020).
White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341â358 (1978).
Dekel, A. et al. Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts. Mon. Not. R. Astron. Soc. 523, 3201â3218 (2023).
Li, Z. et al. Feedback-free starbursts at cosmic dawn: observable predictions for JWST. Astron. Astrophys. 690, A108 (2024).
Herard-Demanche, T. et al. Mapping dusty galaxy growth at z > 5 with FRESCO: detection of Hα in submm galaxy HDF850.1 and the surrounding overdense structures. Preprint at https://arxiv.org/abs/2309.04525 (2023).
Schaye, J. et al. The FLAMINGO project: cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys. Mon. Not. R. Astron. Soc. 526, 4978â5020 (2023).
Bouwens, R. J. et al. UV-continuum slopes at z ~ 4â7 from the HUDF09+ERS+CANDELS observations: discovery of a well-defined UV color-magnitude relationship for z > = 4 star-forming galaxies. Astrophys. J. 754, 83 (2012).
Bouwens, R. J. et al. Lower-luminosity galaxies could reionize the universe: very steep faint-end slopes to the UV luminosity functions at z > = 5â8 from the HUDF09 WFC3/IR observations. Astrophys. J. 752, L5 (2012).
Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 809, 763â795 (2003).
Salpeter, E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).
Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713â717 (1983).
Kashino, D. et al. The stellar mass versus stellar metallicity relation of star-forming galaxies at 1.6â¤zâ¤3.0 and implications for the evolution of the α-enhancement. Astrophys. J. 925, 82 (2022).
Giavalisco, M., Steidel, C. C. & Macchetto, F. D. Hubble Space Telescope imaging of star-forming galaxies at redshifts z > 3. Astrophys. J. 470, 189 (1996).
Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Surveyâthe Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).
Grogin, N. A. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).
Illingworth, G. et al. The Hubble Legacy Fields (HLF-GOODS-S) v1.5 data products: combining 2442 orbits of GOODS-S/CDF-S region ACS and WFC3/IR images. Preprint at https://arxiv.org/abs/1606.00841 (2016).
Beckwith, StevenV. W. et al. The Hubble Ultra Deep Field. Astron. J. 132, 1729â1755 (2006).
Eisenstein, D. J. et al. Overview of the JWST Advanced Deep Extragalactic Survey (JADES). Preprint at https://arxiv.org/abs/2306.02465 (2023).
Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec multi-object spectroscopy. Preprint at https://arxiv.org/abs/2306.02467 (2023).
Hainline, K. N. et al. The cosmos in its infancy: JADES galaxy candidates at z > 8 in GOODS-S and GOODS-N. Astrophys. J. 964, 71 (2024).
Williams, C. C. et al. JEMS: a deep medium-band imaging survey in the Hubble Ultra Deep Field with JWST NIRCam and NIRISS. Astrophys. J. Suppl. Ser. 268, 64 (2023).
Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393â404 (1996).
Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503â1513 (2008).
Weibel, A. et al. Galaxy build-up in the first 1.5 Gyr of cosmic history: insights from the stellar mass function at z ~ 4 â 9 from JWST NIRCam observations. Mon. Not. R. Astron. Soc. 533, 1808â1838 (2024).
Franco, M. et al. GOODS-ALMA: 1.1 mm galaxy survey. I. Source catalog and optically dark galaxies. Astron. Astrophys. 620, A152 (2018).
Gómez-Guijarro, C. et al. GOODS-ALMA 2.0: Source catalog, number counts, and prevailing compact sizes in 1.1 mm galaxies. Astron. Astrophys. 658, A43 (2022).
Cowie, L. L. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). III. A large sample of ALMA sources in the GOODS-S. Astrophys. J. 865, 106 (2018).
Cowie, L. L. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). I. An ultradeep SCUBA-2 survey of the GOODS-N. Astrophys. J. 837, 139 (2017).
Barger, A. J. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). V. Deep 450 um imaging. Astrophys. J. 934, 56 (2022).
Alcalde Pampliega, Belén et al. Optically faint massive Balmer break galaxies at z > 3 in the CANDELS/GOODS fields. Astrophys. J. 876, 135 (2019).
Williams, C. C. et al. Discovery of a dark, massive, ALMA-only galaxy at z ~ 5â6 in a tiny 3 mm survey. Astrophys. J. 884, 154 (2019).
Gómez-Guijarro, C. et al. JWST CEERS probes the role of stellar mass and morphology in obscuring galaxies. Astron. Astrophys. 677, A34 (2023).
McKinney, J. et al. A near-infrared-faint, far-infrared-luminous dusty galaxy at z ~ 5 in COSMOS-Web. Astrophys. J. 956, 72 (2023).
Akins, H. B. et al. Two massive, compact, and dust-obscured candidate z ~ 8 galaxies discovered by JWST. Astrophys. J. 956, 61 (2023).
Barro, G. et al. Extremely red galaxies at z = 5â9 with MIRI and NIRSpec: dusty galaxies or obscured active galactic nuclei? Astrophys. J. 963, 128 (2024).
van der Vlugt, D. et al. An ultradeep multiband very large array survey of the faint radio sky (COSMOS-XS): new constraints on the optically dark population. Astrophys. J. 951, 131 (2023).
Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000â1028 (2003).
Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682â695 (2000).
Elbaz, D. et al. Starbursts in and out of the star-formation main sequence. Astron. Astrophys. 616, A110 (2018).
Puglisi, A. et al. The bright and dark sides of high-redshift starburst galaxies from Herschel and Subaru observations. Astrophys. J. 838, L18 (2017).
Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024).
Landt, H. et al. Variability of the coronal line region in NGC 4151. Mon. Not. R. Astron. Soc. 449, 3795â3805 (2015).
Charlot, Stéphane & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718â731 (2000).
Salim, S., Boquien, M. édéric & Lee, J. C. Dust attenuation curves in the local universe: demographics and new laws for star-forming galaxies and high-redshift analogs. Astrophys. J. 859, 11 (2018).
Schreiber, C. et al. Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0 < z < 4. Astron. Astrophys. 609, A30 (2018).
Reddy, N. A. et al. Paschen-line constraints on dust attenuation and star formation at z ~ 1â3 with JWST/NIRSpec. Astrophys. J. 948, 83 (2023).
Zhou, L. et al. GOODS-ALMA: optically dark ALMA galaxies shed light on a cluster in formation at z = 3.5. Astron. Astrophys. 642, A155 (2020).
Jin, S. et al. Diagnosing deceivingly cold dusty galaxies at 3.5 < z < 6: a substantial population of compact starbursts with high infrared optical depths. Astron. Astrophys. 665, A3 (2022).
Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z > 5 with CEERS. Astrophys. J. 954, L4 (2023).
Labbe, I. et al. UNCOVER: candidate red active galactic nuclei at 3 < z < 7 with JWST and ALMA. Preprint at https://arxiv.org/abs/2306.07320 (2023).
Peng, C. Y. et al. Detailed structural decomposition of galaxy images. Astron. J. 124, 266â293 (2002).
Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. Proc. SPIE 9143, 91433X (2014).
Draine, B. T. et al. Andromedaâs dust. Astrophys. J. 780, 172 (2014).
Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531â608 (2012).
Tinker, J. et al. Toward a halo mass function for precision cosmology: the limits of universality. Astrophys. J. 688, 709â728 (2008).
Murray, S. G., Power, C. & Robotham, A. S. G. HMFcalc: an online tool for calculating dark matter halo mass functions. Astron. Comput. 3, 23 (2013).
Kugel, R. et al. FLAMINGO: calibrating large cosmological hydrodynamical simulations with machine learning. Mon. Not. R. Astron. Soc. 526, 6103â6127 (2023).
Schreiber, C. et al. The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day. Astron. Astrophys. 575, A74 (2015).
Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526â1544 (2023).
Straatman, CarolineM. S. et al. The FourStar Galaxy Evolution Survey (ZFOURGE): ultraviolet to far-infrared catalogs, medium-bandwidth photometric redshifts with improved accuracy, stellar masses, and confirmation of quiescent galaxies to z ~ 3.5. Astrophys. J. 830, 51 (2016).
Stefanon, M. et al. The Spitzer/IRAC Legacy over the GOODS fields: full-depth 3.6, 4.5, 5.8, and 8.0 μm mosaics and photometry for > 9000 galaxies at z ~ 3.5 â10 from the GOODS Reionization Era Wide-area Treasury from Spitzer (GREATS). Astrophys. J. Suppl. Ser. 257, 68 (2021).
Yamaguchi, Y. et al. ALMA 26 arcmin2 survey of GOODS-S at 1 mm (ASAGAO): near-infrared-dark faint ALMA sources. Astrophys. J. 878, 73 (2019).