Thursday, January 16, 2025
No menu items!
HomeNatureAccelerated formation of ultra-massive galaxies in the first billion years

Accelerated formation of ultra-massive galaxies in the first billion years

  • Smail, I., Ivison, R. J. & Blain, A. W. A deep sub-millimeter survey of lensing clusters: a new window on galaxy formation and evolution. Astrophys. J. 490, L5–L8 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Hughes, D. H. et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey. Nature 394, 241–247 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Smail, I. et al. The rest-frame optical properties of SCUBA galaxies. Astrophys. J. 616, 71–85 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Walter, F. et al. The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field. Nature 486, 233–236 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, T. et al. A dominant population of optically invisible massive galaxies in the early Universe. Nature 572, 211–214 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hodge, J. A. & da Cunha, E. High-redshift star formation in the Atacama Large Millimetre/submillimetre Array era. R. Soc. Open Sci. 7, 200556 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menci, N. et al. High-redshift galaxies from early JWST observations: constraints on dark energy models. Astrophys. J. 938, L5 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Boylan-Kolchin, M. Stress testing ΛCDM with high-redshift galaxy candidates. Nat. Astron. 7, 731–735 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovell, C. C. et al. Extreme value statistics of the halo and stellar mass distributions at high redshift: are JWST results in tension with ΛCDM? Mon. Not. R. Astron. Soc. 518, 2511–2520 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Naidu, R. P. et al. Two remarkably luminous galaxy candidates at z ~ 10–12 revealed by JWST. Astrophys. J. 940, L14 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Castellano, M. et al. Early results from GLASS-JWST. III. Galaxy candidates at z ~ 9–15. Astrophys. J. 938, L15 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Labbé, I. et al. A population of red candidate massive galaxies 600 Myr after the Big Bang. Nature 616, 266–269 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pérez-González, P. G. et al. Life beyond 30: probing the −20 < MUV < −17 luminosity function at 8 < z < 13 with the NIRCam parallel field of the MIRI Deep Survey. Astrophys. J. 951, L1 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Finkelstein, S. L. et al. The complete CEERS early Universe galaxy sample: a surprisingly slow evolution of the space density of bright galaxies at z ~ 8.5–14.5. Astrophys. J. Lett. 969, L2 (2024).

  • Willott, C. J. et al. A steep decline in the galaxy space density beyond redshift 9 in the CANUCS UV luminosity function. Astrophys. J. 966, 74 (2024).

    Article 
    ADS 

    Google Scholar
     

  • McLeod, D. J. et al. The galaxy UV luminosity function at z ~ 11 from a suite of public JWST ERS, ERO, and Cycle-1 programs. Mon. Not. R. Astron. Soc. 527, 5004–5022 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Oesch, P. A. et al. The JWST FRESCO survey: legacy NIRCam/grism spectroscopy and imaging in the two GOODS fields. Mon. Not. R. Astron. Soc. 525, 2864–2874 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Giavalisco, M. et al. The Great Observatories Origins Deep Survey: initial results from optical and near-infrared imaging. Astrophys. J. 600, L93–L98 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Fudamoto, Y. et al. Normal, dust-obscured galaxies in the epoch of reionization. Nature 597, 489–492 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Xiao, M.-Y. et al. The hidden side of cosmic star formation at z > 3. Bridging optically dark and Lyman-break galaxies with GOODS-ALMA. Astron. Astrophys. 672, A18 (2023).

    Article 

    Google Scholar
     

  • Barrufet, L. et al. Unveiling the nature of infrared bright, optically dark galaxies with early JWST data. Mon. Not. R. Astron. Soc. 522, 449–456 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Pérez-González, P. G. et al. CEERS key paper. IV. A triality in the nature of HST-dark galaxies. Astrophys. J. 946, L16 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Whitaker, K. E. et al. The Hubble Legacy Field GOODS-S photometric catalog. Astrophys. J. Suppl. Ser. 244, 16 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Rieke, M. J. et al. JADES initial data release for the Hubble Ultra Deep Field: revealing the faint infrared sky with deep JWST NIRCam imaging. Astrophys. J. Suppl. Ser. 269, 16 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Carnall, A. C. et al. Inferring the star formation histories of massive quiescent galaxies with BAGPIPES: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Boquien, M. et al. CIGALE: a Python code investigating galaxy emission. Astron. Astrophys. 622, A103 (2019).

    Article 

    Google Scholar
     

  • Planck Collaboration Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

    Article 

    Google Scholar
     

  • Moster, B. P., Naab, T. & White, SimonD. M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Moster, B. P., Naab, T. & White, SimonD. M. EMERGE—an empirical model for the formation of galaxies since z ~ 10. Mon. Not. R. Astron. Soc. 477, 1822–1852 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tacchella, S. et al. A redshift-independent efficiency model: star formation and stellar masses in dark matter halos at z ≳ 4. Astrophys. J. 868, 92 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wechsler, R. H. & Tinker, J. L. The connection between galaxies and their dark matter halos. Annu. Rev. Astron. Astrophys. 56, 435–487 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Shuntov, M. et al. COSMOS2020: cosmic evolution of the stellar-to-halo mass relation for central and satellite galaxies up to z ~ 5. Astron. Astrophys. 664, A61 (2022).

    Article 

    Google Scholar
     

  • Riechers, D. A. et al. COLDz: a high space density of massive dusty starburst galaxies ~ 1 billion years after the Big Bang. Astrophys. J. 895, 81 (2020).

    Article 
    ADS 

    Google Scholar
     

  • White, S. D. M. & Rees, M. J. Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Dekel, A. et al. Efficient formation of massive galaxies at cosmic dawn by feedback-free starbursts. Mon. Not. R. Astron. Soc. 523, 3201–3218 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Li, Z. et al. Feedback-free starbursts at cosmic dawn: observable predictions for JWST. Astron. Astrophys. 690, A108 (2024).

  • Herard-Demanche, T. et al. Mapping dusty galaxy growth at z > 5 with FRESCO: detection of Hα in submm galaxy HDF850.1 and the surrounding overdense structures. Preprint at https://arxiv.org/abs/2309.04525 (2023).

  • Schaye, J. et al. The FLAMINGO project: cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys. Mon. Not. R. Astron. Soc. 526, 4978–5020 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bouwens, R. J. et al. UV-continuum slopes at z ~ 4–7 from the HUDF09+ERS+CANDELS observations: discovery of a well-defined UV color-magnitude relationship for z > = 4 star-forming galaxies. Astrophys. J. 754, 83 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bouwens, R. J. et al. Lower-luminosity galaxies could reionize the universe: very steep faint-end slopes to the UV luminosity functions at z > = 5–8 from the HUDF09 WFC3/IR observations. Astrophys. J. 752, L5 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 809, 763–795 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Salpeter, E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Kashino, D. et al. The stellar mass versus stellar metallicity relation of star-forming galaxies at 1.6≤z≤3.0 and implications for the evolution of the α-enhancement. Astrophys. J. 925, 82 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Giavalisco, M., Steidel, C. C. & Macchetto, F. D. Hubble Space Telescope imaging of star-forming galaxies at redshifts z > 3. Astrophys. J. 470, 189 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Koekemoer, A. M. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—the Hubble Space Telescope observations, imaging data products, and mosaics. Astrophys. J. Suppl. Ser. 197, 36 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Grogin, N. A. et al. CANDELS: the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 197, 35 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Illingworth, G. et al. The Hubble Legacy Fields (HLF-GOODS-S) v1.5 data products: combining 2442 orbits of GOODS-S/CDF-S region ACS and WFC3/IR images. Preprint at https://arxiv.org/abs/1606.00841 (2016).

  • Beckwith, StevenV. W. et al. The Hubble Ultra Deep Field. Astron. J. 132, 1729–1755 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Eisenstein, D. J. et al. Overview of the JWST Advanced Deep Extragalactic Survey (JADES). Preprint at https://arxiv.org/abs/2306.02465 (2023).

  • Bunker, A. J. et al. JADES NIRSpec initial data release for the Hubble Ultra Deep Field: redshifts and line fluxes of distant galaxies from the deepest JWST Cycle 1 NIRSpec multi-object spectroscopy. Preprint at https://arxiv.org/abs/2306.02467 (2023).

  • Hainline, K. N. et al. The cosmos in its infancy: JADES galaxy candidates at z > 8 in GOODS-S and GOODS-N. Astrophys. J. 964, 71 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Williams, C. C. et al. JEMS: a deep medium-band imaging survey in the Hubble Ultra Deep Field with JWST NIRCam and NIRISS. Astrophys. J. Suppl. Ser. 268, 64 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Brammer, G. B., van Dokkum, P. G. & Coppi, P. EAZY: a fast, public photometric redshift code. Astrophys. J. 686, 1503–1513 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Weibel, A. et al. Galaxy build-up in the first 1.5 Gyr of cosmic history: insights from the stellar mass function at z ~ 4 – 9 from JWST NIRCam observations. Mon. Not. R. Astron. Soc. 533, 1808–1838 (2024).

    Article 

    Google Scholar
     

  • Franco, M. et al. GOODS-ALMA: 1.1 mm galaxy survey. I. Source catalog and optically dark galaxies. Astron. Astrophys. 620, A152 (2018).

    Article 

    Google Scholar
     

  • Gómez-Guijarro, C. et al. GOODS-ALMA 2.0: Source catalog, number counts, and prevailing compact sizes in 1.1 mm galaxies. Astron. Astrophys. 658, A43 (2022).

    Article 

    Google Scholar
     

  • Cowie, L. L. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). III. A large sample of ALMA sources in the GOODS-S. Astrophys. J. 865, 106 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Cowie, L. L. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). I. An ultradeep SCUBA-2 survey of the GOODS-N. Astrophys. J. 837, 139 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Barger, A. J. et al. A submillimeter perspective on the GOODS fields (SUPER GOODS). V. Deep 450 um imaging. Astrophys. J. 934, 56 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Alcalde Pampliega, Belén et al. Optically faint massive Balmer break galaxies at z > 3 in the CANDELS/GOODS fields. Astrophys. J. 876, 135 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Williams, C. C. et al. Discovery of a dark, massive, ALMA-only galaxy at z ~ 5–6 in a tiny 3 mm survey. Astrophys. J. 884, 154 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Gómez-Guijarro, C. et al. JWST CEERS probes the role of stellar mass and morphology in obscuring galaxies. Astron. Astrophys. 677, A34 (2023).

    Article 

    Google Scholar
     

  • McKinney, J. et al. A near-infrared-faint, far-infrared-luminous dusty galaxy at z ~ 5 in COSMOS-Web. Astrophys. J. 956, 72 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Akins, H. B. et al. Two massive, compact, and dust-obscured candidate z ~ 8 galaxies discovered by JWST. Astrophys. J. 956, 61 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Barro, G. et al. Extremely red galaxies at z = 5–9 with MIRI and NIRSpec: dusty galaxies or obscured active galactic nuclei? Astrophys. J. 963, 128 (2024).

    Article 
    ADS 

    Google Scholar
     

  • van der Vlugt, D. et al. An ultradeep multiband very large array survey of the faint radio sky (COSMOS-XS): new constraints on the optically dark population. Astrophys. J. 951, 131 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Elbaz, D. et al. Starbursts in and out of the star-formation main sequence. Astron. Astrophys. 616, A110 (2018).

    Article 

    Google Scholar
     

  • Puglisi, A. et al. The bright and dark sides of high-redshift starburst galaxies from Herschel and Subaru observations. Astrophys. J. 838, L18 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Matthee, J. et al. Little red dots: an abundant population of faint active galactic nuclei at z ~ 5 revealed by the EIGER and FRESCO JWST surveys. Astrophys. J. 963, 129 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Landt, H. et al. Variability of the coronal line region in NGC 4151. Mon. Not. R. Astron. Soc. 449, 3795–3805 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Charlot, Stéphane & Fall, S. M. A simple model for the absorption of starlight by dust in galaxies. Astrophys. J. 539, 718–731 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Salim, S., Boquien, M. édéric & Lee, J. C. Dust attenuation curves in the local universe: demographics and new laws for star-forming galaxies and high-redshift analogs. Astrophys. J. 859, 11 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Schreiber, C. et al. Dust temperature and mid-to-total infrared color distributions for star-forming galaxies at 0 < z < 4. Astron. Astrophys. 609, A30 (2018).

    Article 

    Google Scholar
     

  • Reddy, N. A. et al. Paschen-line constraints on dust attenuation and star formation at z ~ 1–3 with JWST/NIRSpec. Astrophys. J. 948, 83 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, L. et al. GOODS-ALMA: optically dark ALMA galaxies shed light on a cluster in formation at z = 3.5. Astron. Astrophys. 642, A155 (2020).

    Article 

    Google Scholar
     

  • Jin, S. et al. Diagnosing deceivingly cold dusty galaxies at 3.5 < z < 6: a substantial population of compact starbursts with high infrared optical depths. Astron. Astrophys. 665, A3 (2022).

    Article 

    Google Scholar
     

  • Kocevski, D. D. et al. Hidden little monsters: spectroscopic identification of low-mass, broad-line AGNs at z > 5 with CEERS. Astrophys. J. 954, L4 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Labbe, I. et al. UNCOVER: candidate red active galactic nuclei at 3 < z < 7 with JWST and ALMA. Preprint at https://arxiv.org/abs/2306.07320 (2023).

  • Peng, C. Y. et al. Detailed structural decomposition of galaxy images. Astron. J. 124, 266–293 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. Proc. SPIE 9143, 91433X (2014).

    Article 

    Google Scholar
     

  • Draine, B. T. et al. Andromeda’s dust. Astrophys. J. 780, 172 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Annu. Rev. Astron. Astrophys. 50, 531–608 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Tinker, J. et al. Toward a halo mass function for precision cosmology: the limits of universality. Astrophys. J. 688, 709–728 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Murray, S. G., Power, C. & Robotham, A. S. G. HMFcalc: an online tool for calculating dark matter halo mass functions. Astron. Comput. 3, 23 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Kugel, R. et al. FLAMINGO: calibrating large cosmological hydrodynamical simulations with machine learning. Mon. Not. R. Astron. Soc. 526, 6103–6127 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schreiber, C. et al. The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day. Astron. Astrophys. 575, A74 (2015).

    Article 

    Google Scholar
     

  • Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526–1544 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Straatman, CarolineM. S. et al. The FourStar Galaxy Evolution Survey (ZFOURGE): ultraviolet to far-infrared catalogs, medium-bandwidth photometric redshifts with improved accuracy, stellar masses, and confirmation of quiescent galaxies to z ~ 3.5. Astrophys. J. 830, 51 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Stefanon, M. et al. The Spitzer/IRAC Legacy over the GOODS fields: full-depth 3.6, 4.5, 5.8, and 8.0 μm mosaics and photometry for > 9000 galaxies at z ~ 3.5 –10 from the GOODS Reionization Era Wide-area Treasury from Spitzer (GREATS). Astrophys. J. Suppl. Ser. 257, 68 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Yamaguchi, Y. et al. ALMA 26 arcmin2 survey of GOODS-S at 1 mm (ASAGAO): near-infrared-dark faint ALMA sources. Astrophys. J. 878, 73 (2019).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments