Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).
Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).
Koch, A., Hubau, W. & Lewis, S. L. Earth System Models are not capturing present‐day tropical forest carbon dynamics. Earths Future 9, e2020EF001874 (2021).
Bauman, D. et al. Tropical tree mortality has increased with rising atmospheric water stress. Nature 608, 528–533 (2022).
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Arif, S. & MacNeil, M. A. Applying the structural causal model framework for observational causal inference in ecology. Ecol. Monogr. 93, e1554 (2023).
Segura-Garcia, C., Bauman, D., Arruda, V. L. S., Alencar, A. A. C. & Menor, I. O. Human land occupation regulates the effect of the climate on the burned area of the Brazilian Cerrado. Commun. Earth Environ. 5, 361 (2024).
Pearl, J. Causal inference in statistics: an overview. Stat. Surv. 3, 96–146 (2009).
Murphy, H. T., Bradford, M. G., Dalongeville, A., Ford, A. J. & Metcalfe, D. J. No evidence for long-term increases in biomass and stem density in the tropical rain forests of Australia. J. Ecol. 101, 1589–1597 (2013).
Cavaleri, M. A. et al. Tropical rainforest carbon sink declines during El Niño as a result of reduced photosynthesis and increased respiration rates. New Phytol. 216, 136–149 (2017).
Rifai, S. W. et al. ENSO drives interannual variation of forest woody growth across the tropics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170410 (2018).
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).
Sanchez-Martinez, P. et al. Amazon rainforest adjusts to long-term experimental drought. Nat. Ecol. Evol. 9, 970–979 (2025).
Parker, C. L., Bruyère, C. L., Mooney, P. A. & Lynch, A. H. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia. Clim. Dyn. 51, 3467–3485 (2018).
Lavendar, S. L. & Walsh, K. J. E. Dynamically downscaled simulations of Australian region tropical cyclones in current and future climates. Geophys. Res. Lett. 38, 1–6 (2011).
Ibanez, T. et al. Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. J. Ecol. 107, 279–292 (2018).
Murphy, H. T., Metcalfe, D. J., Bradford, M. G. & Ford, A. J. Community divergence in a tropical forest following a severe cyclone. Austral Ecol. 39, 696–709 (2014).
Murphy, H. T. & Metcalfe, D. J. The perfect storm: Weed invasion and intense storms in tropical forests. Austral Ecol. 41, 864–874 (2016).
Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).
Montreal Process Implementation Group for Australia and National Forest Inventory Steering Committee. Australia’s State of the Forests Report 2018 (ABARES, 2018).
Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012).
Bradford, M. G., Murphy, H. T., Ford, A. J., Hogan, D. L. & J., M. D. in Ecology Vol. 95, 2362 (ESA, 2014).
Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Chang. Biol. 28, 1414–1432 (2021).
Bradford, M. & Murphy, H. T. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS One 14, e0208377 (2019).
Rowland, L. et al. Shock and stabilisation following long-term drought in tropical forest from 15 years of litterfall dynamics. J. Ecol. 106, 1673–1682 (2017).
Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).
Rifai, S. W. et al. Thirty-eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences 19, 491–515 (2022).
Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).
Cunha, H. F. V. et al. Direct evidence for phosphorus limitation on Amazon forest productivity. Nature 608, 558–562 (2022).
Jiang, M. et al. Microbial competition for phosphorus limits the CO2 response of a mature forest. Nature 630, 660–665 (2024).
Crous, K. Y. et al. Leaf warming in the canopy of mature tropical trees reduced photosynthesis due to downregulation of photosynthetic capacity and reduced stomatal conductance. New Phytol. 245, 1421–1436 (2024).
Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).
Walker, W. S. et al. The global potential for increased storage of carbon on land. Proc. Natl Acad. Sci. USA 119, e2111312119 (2022).
Raich, J. W. & Schlesinger, W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99 (1992).
Viscarra Rossel, R. A., Webster, R., Bui, E. N. & Baldock, J. A. Baseline map of organic carbon in Australian soil to support national carbon accounting and monitoring under climate change. Glob. Chang. Biol. 20, 2953–2970 (2014).
Nottingham, A. T. et al. Microbial diversity declines in warmed tropical soil and respiration rise exceed predictions as communities adapt. Nat. Microbiol. 7, 1650–1660 (2022).
Sotta, E. D. et al. Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil. Glob. Chang. Biol. 13, 2218–2229 (2007).
Luo, Z., Feng, W., Luo, Y., Baldock, J. & Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Chang. Biol. 23, 4430–4439 (2017).
Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).
Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
Hammond, W. M. et al. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nat. Commun. 13, 1761 (2022).
Middleby, K. B., Cheesman, A. W. & Cernusak, L. A. Impacts of elevated temperature and vapour pressure deficit on leaf gas exchange and plant growth across six tropical rainforest tree species. New Phytol. 243, 648–661 (2024).
Slot, M., Rifai, S. W., Eze, C. E. & Winter, K. The stomatal response to vapor pressure deficit drives the apparent temperature response of photosynthesis in tropical forests. New Phytol. 244, 1238–1249 (2024).
Duan, H. et al. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. Tree Physiol. 38, 1138–1151 (2018).
Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).
Doughty, C. E. et al. Tropical forests are approaching critical temperature thresholds. Nature 621, 105–111 (2023).
Cunningham, S. C. & Read, J. Foliar temperature tolerance of temperate and tropical evergreen rain forest trees of Australia. Tree Physiol. 26, 1435–1443 (2006).
Menezes-Silva, P. E. et al. Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol. Evol. 9, 11979–11999 (2019).
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manage. 259, 660–684 (2010).
Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).
Turton, S. M. Landscape-scale impacts of Cyclone Larry on the forests of northeast Australia, including comparisons with previous cyclones impacting the region between 1858 and 2006. Austral Ecol. 33, 409–416 (2008).
Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).
Ibanez, T. et al. Damage to tropical forests caused by cyclones is driven by wind speed but mediated by topographical exposure and tree characteristics. Glob. Chang. Biol. 30, e17317 (2024).
Metcalfe, D. J., Bradford, M. G. & Ford, A. J. Cyclone damage to tropical rain forests: Species- and community-level impacts. Austral Ecol. 33, 432–441 (2008).
Connell, J. H. & Green, P. T. Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology 81, 568–584 (2000).
Berenguer, E. et al. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Chang. Biol. 20, 3713–3726 (2014).
Cummings, D. L., Boone Kauffman, J., Perry, D. A. & Flint Hughes, R. Aboveground biomass and structure of rainforests in the southwestern Brazilian Amazon. Forest Ecol. Manage. 163, 293–307 (2002).
Malhi, Y. et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Chang. Biol. 12, 1107–1138 (2006).
Djuikouo, M. N. K., Doucet, J.-L., Nguembou, C. K., Lewis, S. L. & Sonké, B. Diversity and aboveground biomass in three tropical forest types in the Dja Biosphere Reserve, Cameroon. Afr. J. Ecol. 48, 1053–1063 (2010).
Glenday, J. Carbon storage and emissions offset potential in an East African tropical rainforest. Forest Ecol. Manage. 235, 72–83 (2006).
Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120295 (2013).
Kotowska, M. M., Leuschner, C., Triadiati, T., Meriem, S. & Hertel, D. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Glob. Chang. Biol. 21, 3620–3634 (2015).
Katayama, A. et al. Carbon allocation in a Bornean tropical rainforest without dry seasons. J. Plant Res. 126, 505–515 (2013).
Slik, J. W. F. et al. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob. Ecol. Biogeogr. 19, 50–60 (2010).
Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 11, 915–920 (2018).
Graham, A. E. (ed.) The CSIRO Rainforest Permanent Plots of North Queensland: Site, Structural, Floristic and Edaphic Descriptions (Rainforest CRC, Cairns, 2006).
Talbot, J. et al. Methods to estimate aboveground wood productivity from long-term forest inventory plots. Forest Ecol. Manage. 320, 30–38 (2014).
Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).
Ledo, A. et al. Re-evaluation of individual diameter:height allometric models to improve biomass estimation of tropical trees. Ecol. Appl. 26, 2376–2382 (2016).
Hutchinson, M. F., Xu, T., Kesteven, J. L., Marang, I. J. & Evans, B. J. ANUClimate v2.0. NCI Data Catalogue https://doi.org/10.25914/60a10aa56dd1b (2022).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).
Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J. & Thoning, K. W. NOAA Global Greenhouse Gas Reference Network Flask-Air Sample Measurements of CO2, CH4, CO, N2O, H2, SF6 and isotopic ratios at Global and Regional Background Sites, 1997-2020, Version: 2021-07-30 (ed. NOAA GML Carbon Cycle Cooperative Global Air Sampling Network) (GML, 2021).
Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34, L07701 (2007).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 73, 3–36 (2011).
Cinelli, C., Forney, A. & Pearl, J. A crash course in good and bad controls. Sociol. Meth. Res. 53, https://doi.org/10.1177/00491241221099552 (2022).
Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).
Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).
Bauman, D., Drouet, T., Dray, S. & Vleminckx, J. Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. Ecography 41, 1638–1649 (2018).
Dray, S. et al. R package version 0.3-24: adespatial: multivariate multiscale spatial analysis. CRAN https://CRAN.R-project.org/package=adespatial (2024).
Bauman, D., Drouet, T., Fortin, M. J. & Dray, S. Optimizing the choice of a spatial weighting matrix in eigenvector‐based methods. Ecology 99, 2159–2166 (2018).
Anderson, M. J. & Legendre, P. An empirical comparison of permutation methods for tests of partial regression coefficients in a linear model. J. Stat. Comput. Simul. 62, 271–303 (1999).
McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and STAN 2nd edn (Chapman and Hall, 2020).
Lenth, R. R package v.1.10: emmeans: estimated marginal means, aka least-squares means. CRAN https://CRAN.R-project.org/package=emmeans (2024).
R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2025).