Thursday, October 24, 2024
No menu items!
HomeNatureA transcriptomic hourglass in brown algae

A transcriptomic hourglass in brown algae

  • Knoll, A. H. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 39, 217–239 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Niklas, K. J. & Newman, S. A. The origins of multicellular organisms. Evol. Dev. 15, 41–52 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Duboule, D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development 1994 (supplement), 135–142 (1994).

    Article 

    Google Scholar
     

  • Raff, R. A. The Shape of Life: Genes, Development, and the Evolution of Animal Form (Univ. of Chicago Press, 1996).

  • Domazet-LoÅ¡o, T. & Tautz, D. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468, 815–818 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kalinka, A. T. et al. Gene expression divergence recapitulates the developmental hourglass model. Nature 468, 811–814 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Levin, M. et al. The mid-developmental transition and the evolution of animal body plans. Nature 531, 637–641 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Quint, M. et al. A transcriptomic hourglass in plant embryogenesis. Nature 490, 98–101 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, X., Hui, J. H. L., Lee, Y. Y., Wan Law, P. T. & Kwan, H. S. A “developmental hourglass” in fungi. Mol. Biol. Evol. 32, 1556–1566 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cock, J. M. et al. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465, 617–621 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Denoeud, F. et al. Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems. Preprint at bioRxiv https://doi.org/10.1101/2024.02.19.579948 (2024).

  • Grosberg, R. K. & Strathmann, R. R. The evolution of multicellularity: a minor major transition? Annu. Rev. Ecol. Evol. Syst. 38, 621–654 (2007).

    Article 

    Google Scholar
     

  • von Baer, K. E. Über Entwickelungsgeschichte der Thiere; Beobachtung und Reflexion (Bornträger, 1828).

  • Müller, F. Für Darwin (Wilhelm Engelmann, 1864).

  • Haeckel, E. Generelle Morphologie der Organismen (Georg Reimer, 1866).

  • His, W. Unsere Körperform und das Physiologische Problem ihrer Entstehung: Briefe an einen Befreundeten Naturforscher (Vogel, 1875).

  • Drost, H.-G., Janitza, P., Grosse, I. & Quint, M. Cross-kingdom comparison of the developmental hourglass. Curr. Opin. Genet. Dev. 45, 69–75 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yanai, I. Development and evolution through the lens of global gene regulation. Trends Genet. 34, 11–20 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson, M. K. Theories, laws, and models in evo-devo. J. Exp. Zoolog. B 338, 36–61 (2022).

    Article 

    Google Scholar
     

  • Roux, J. & Robinson-Rechavi, M. Developmental constraints on vertebrate genome evolution. PLoS Genet. 4, e1000311 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Comte, A., Roux, J. & Robinson-Rechavi, M. Molecular signaling in zebrafish development and the vertebrate phylotypic period. Evol. Dev. 12, 144–156 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piasecka, B., Lichocki, P., Moretti, S., Bergmann, S. & Robinson-Rechavi, M. The hourglass and the early conservation models—co-existing patterns of developmental constraints in vertebrates. PLoS Genet. 9, e1003476 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, F. & Zheng, C. Transcriptome age of individual cell types in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 120, e2216351120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mayshar, Y. et al. Time-aligned hourglass gastrulation models in rabbit and mouse. Cell 186, 2610–2627.e18 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ullrich, K. K. & Glytnasi, N. E. oggmap: a Python package to extract gene ages per orthogroup and link them with single-cell RNA data. Bioinformatics 39, btad657 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, H., Zhang, R. & Scanlon, M. J. A multiplexed transcriptomic analysis of a plant embryonic hourglass. Preprint at bioRxiv https://doi.org/10.1101/2024.04.04.588207 (2024).

  • Uesaka, M., Kuratani, S. & Irie, N. The developmental hourglass model and recapitulation: an attempt to integrate the two models. J. Exp. Zoolog. B 338, 76–86 (2022).

    Article 

    Google Scholar
     

  • Akhshabi, S., Sarda, S., Dovrolis, C. & Yi, S. An explanatory evo-devo model for the developmental hourglass. F1000Research 3, 156 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedlander, T., Mayo, A. E., Tlusty, T. & Alon, U. Evolution of bow-tie architectures in biology. PLoS Comput. Biol. 11, e1004055 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabrin, K. M. & Dovrolis, C. The hourglass effect in hierarchical dependency networks. Netw. Sci. 5, 490–528 (2017).

    Article 

    Google Scholar
     

  • Kohsokabe, T., Kuratanai, S. & Kaneko, K. Developmental hourglass: verification by numerical evolution and elucidation by dynamical-systems theory. PLoS Comput. Biol. 20, e1011867 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bringloe, T. T. et al. Phylogeny and evolution of the brown algae. Crit. Rev. Plant Sci. 39, 281–321 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Choi, S.-W. et al. Ordovician origin and subsequent diversification of the brown algae. Curr. Biol. 34, 740–754.e4 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coelho, S. M., Peters, A. F., Müller, D. & Cock, J. M. Ectocarpus: an evo-devo model for the brown algae. EvoDevo 11, 19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bothwell, J. H., Marie, D., Peters, A. F., Cock, J. M. & Coelho, S. M. Role of endoreduplication and apomeiosis during parthenogenetic reproduction in the model brown alga Ectocarpus. New Phytol. 188, 111–121 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, G. & Mooers, A. O. Size and complexity among multicellular organisms. Biol. J. Linn. Soc. 60, 345–363 (1997).

    Article 

    Google Scholar
     

  • Barrera-Redondo, J. et al. Origin and evolutionary trajectories of brown algal sex chromosomes. Preprint at bioRxiv https://doi.org/10.1101/2024.01.15.575685 (2024).

  • Godfrey-Smith, P. Complex life cycles and the evolutionary process. Philos. Sci. 83, 816–827 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Goodner, B. & Quatrano, R. Fucus embryogenesis: a model to study the establishment of polarity. Plant Cell 5, 1471–1481 (1993).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drost, H.-G., Gabel, A., Liu, J., Quint, M. & Grosse, I. myTAI: evolutionary transcriptomics with R. Bioinformatics 34, 1589–1590 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrera-Redondo, J., Lotharukpong, J. S., Drost, H.-G. & Coelho, S. M. Uncovering gene-family founder events during major evolutionary transitions in animals, plants and fungi using GenEra. Genome Biol. 24, 54 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drost, H.-G., Gabel, A., Grosse, I. & Quint, M. Evidence for active maintenance of phylotranscriptomic hourglass patterns in animal and plant embryogenesis. Mol. Biol. Evol. 32, 1221–1231 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moutsopoulos, I. et al. noisyR: enhancing biological signal in sequencing datasets by characterizing random technical noise. Nucleic Acids Res. 49, e83 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drost, H.-G. et al. Post-embryonic hourglass patterns mark ontogenetic transitions in plant development. Mol. Biol. Evol. 33, 1158–1163 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, H. et al. Constrained vertebrate evolution by pleiotropic genes. Nat. Ecol. Evol. 1, 1722–1730 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, J. & Robinson-Rechavi, M. Developmental constraints on genome evolution in four bilaterian model species. Genome Biol. Evol. 10, 2266–2277 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yanai, I. et al. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 21, 650–659 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kryuchkova-Mostacci, N. & Robinson-Rechavi, M. A benchmark of gene expression tissue-specificity metrics. Brief. Bioinformormatics 18, 205–214 (2017).

    CAS 

    Google Scholar
     

  • Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rödelsperger, C. et al. Spatial transcriptomics of nematodes identifies sperm cells as a source of genomic novelty and rapid evolution. Mol. Biol. Evol. 38, 229–243 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Haerty, W. et al. Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177, 1321–1335 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinckenbosch, N., Dupanloup, I. & Kaessmann, H. Evolutionary fate of retroposed gene copies in the human genome. Proc. Natl Acad. Sci. USA 103, 3220–3225 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaessmann, H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 20, 1313–1326 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, X. et al. Young genes out of the male: an insight from evolutionary age analysis of the pollen transcriptome. Mol. Plant 8, 935–945 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gossmann, T. I., Saleh, D., Schmid, M. W., Spence, M. A. & Schmid, K. J. Transcriptomes of plant gametophytes have a higher proportion of rapidly evolving and young genes than sporophytes. Mol. Biol. Evol. 33, 1669–1678 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipinska, A. et al. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga Ectocarpus. Mol. Biol. Evol. 32, 1581–1597 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Koska, S. et al. Somatic embryogenesis of grapevine (Vitis vinifera) expresses a transcriptomic hourglass. Preprint at bioRxiv https://doi.org/10.1101/2024.04.08.588272 (2024).

  • Merényi, Z. et al. Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom-forming fungi (Agaricomycetes). eLife 11, e71348 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. The phylotranscriptomic hourglass pattern in fungi: an updated model. Preprint at bioRxiv https://doi.org/10.1101/2022.07.14.500038 (2022).

  • Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134, 25–36 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schleip, W. Die Determination der Primitiventwicklung: eine zusammenfassende Darstellung der Ergebnisse über das Determinationsgeschehen in den ersten Entwicklungsstadien der Tiere (Akad. Verlagsgesellschaft, 1929).

  • Sander, K. in Development and Evolution (eds Goodwin, B. C., Holder, N. & Wylie, C. G.) 137–159 (Cambridge Univ. Press, 1983).

  • Bogaert, K. A., Zakka, E. E., Coelho, S. M. & De Clerck, O. Polarization of brown algal zygotes. Semin. Cell Dev. Biol. 134, 90–102 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kropf, D. L., Bisgrove, S. R. & Hable, W. E. Establishing a growth axis in fucoid algae. Trends Plant Sci. 4, 490–494 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brownlee, C., Bouget, F.-Y. & Corellou, F. Choosing sides: establishment of polarity in zygotes of fucoid algae. Semin. Cell Dev. Biol. 12, 345–351 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bogaert, K. A., Beeckman, T. & De Clerck, O. Two-step cell polarization in algal zygotes. Nat. Plants 3, 16221 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Klochkova, T. A., Motomura, T., Nagasato, C., Klimova, A. V. & Kim, G. H. The role of egg flagella in the settlement and development of zygotes in two Saccharina species. Phycologia 58, 145–153 (2019).

    Article 

    Google Scholar
     

  • Cridge, A. G., Dearden, P. K., & Brownfield, L. R. Convergent occurrence of the developmental hourglass in plant and animal embryogenesis? Ann. Bot. 117, 833–843 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, J. P. & Lymbery, R. A. Sexual selection after gamete release in broadcast spawning invertebrates. Philos. Trans. R. Soc. B 375, 20200069 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cossard, G. G. et al. Selection drives convergent gene expression changes during transitions to co-sexuality in haploid sexual systems. Nat. Ecol. Evol. 6, 579–589 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liesner, D. et al. Developmental pathways underlying sexual differentiation in a U/V sex chromosome system. Preprint at bioRxiv https://doi.org/10.1101/2024.02.09.579736 (2024).

  • Luthringer, R. et al. Sexual dimorphism in the brown algae. Perspect. Phycol. 1, 11–25 (2014).


    Google Scholar
     

  • Hatchett, W. J. et al. Evolutionary dynamics of sex-biased gene expression in a young XY system: insights from the brown alga genus Fucus. New Phytol. 238, 422–437 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalinka, A. T. & Tomancak, P. The evolution of early animal embryos: conservation or divergence? Trends Ecol. Evol. 27, 385–393 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Artieri, C. G., Haerty, W. & Singh, R. S. Ontogeny and phylogeny: molecular signatures of selection, constraint, and temporal pleiotropy in the development of Drosophila. BMC Biol. 7, 42 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller, D. G., Kawai, H., Stache, B. & Lanka, S. A virus infection in the marine brown alga Ectocarpus siliculosus (Phaeophyceae). Bot. Acta 103, 72–82 (1990).

    Article 

    Google Scholar
     

  • Coelho, S. M. et al. Spatiotemporal patterning of reactive oxygen production and Ca2+ wave propagation in Fucus rhizoid cells. Plant Cell 14, 2369–2381 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Starr, R. C. & Zeikus, J. A. UTEX—the culture collection of algae at The University of Texas at Austin. J. Phycol. 23, 1 (1987).


    Google Scholar
     

  • Coelho, S. M. et al. How to cultivate Ectocarpus. Cold Spring Harb. Protoc. 2012, 258–261 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Tatewaki, M. Formation of a crustaceous sporophyte with unilocular sporangia in Scytosiphon lomentaria. Phycologia 6, 62–66 (1966).

    Article 

    Google Scholar
     

  • Krasovec, M., Hoshino, M., Zheng, M., Lipinska, A. P. & Coelho, S. M. Low spontaneous mutation rate in complex multicellular eukaryotes with a haploid–diploid life cycle. Mol. Biol. Evol. 40, msad105 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, H. et al. nf-core/rnaseq: nf-core/rnaseq v3.5—Copper Chameleon. Zenodo https://doi.org/10.5281/zenodo.5789421 (2021).

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2016).

    Article 
    PubMed Central 

    Google Scholar
     

  • Domazet-Loso, T., Brajković, J. & Tautz, D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 23, 533–539 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sayers, E. W. et al. GenBank. Nucleic Acids Res. 47, D94–D99 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schoch, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020, baaa062 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dittami, S. M. et al. The genome of Ectocarpus subulatus—a highly stress-tolerant brown alga. Mar. Genomics 52, 100740 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Cánovas, F. G., Mota, C. F., Serrão, E. A. & Pearson, G. A. Driving south: a multi-gene phylogeny of the brown algal family Fucaceae reveals relationships and recent drivers of a marine radiation. BMC Evol. Biol. 11, 371 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aggarwal, C. C., Hinneburg, A. & Keim, D. A. On the surprising behavior of distance metrics in high dimensional space. In Database Theory—ICDT 2001 (eds. Van den Bussche, J. & Vianu, V.) 420–434 (Springer, 2001); https://doi.org/10.1007/3-540-44503-X_27.

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2022).

  • Drost, H.-G. Philentropy: information theory and distance quantification with R. J. Open Source Softw. 3, 765 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossmann, S., Bauer, S., Robinson, P. N. & Vingron, M. Improved detection of overrepresentation of gene-ontology annotations with parent–child analysis. Bioinformatics 23, 3024–3031 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexa, A. & Rahnenfuhrer, J. topGO: Enrichment analysis for gene ontology. Bioconductor version 3.16. https://doi.org/10.18129/B9.bioc.topGO (2023).

  • RELATED ARTICLES

    Most Popular

    Recent Comments