Wednesday, February 26, 2025
No menu items!
HomeNatureA single-fibre computer enables textile networks and distributed inference

A single-fibre computer enables textile networks and distributed inference

  • Dunn, J., Runge, R. & Snyder, M. Wearables and the medical revolution. Per Med. 15, 429–448 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yetisen, A. K., Martinez‐Hurtado, J. L., Ünal, B., Khademhosseini, A. & Butt, H. Wearables in medicine. Adv. Mater. 30, e1706910 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, T., Jovanov, E. & Raskovic, D. Issues in wearable computing for medical monitoring applications: a case study of a wearable ECG monitoring device. In Digest of Papers. Fourth International Symposium on Wearable Computers 43–49 (IEEE Computer Society, 2000).

  • Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, Y., Pharr, M. & Salvatore, G. A. Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 11, 9614–9635 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yang, G.-Z., Andreu-Perez, J., Hu, X. & Thiemjarus, S. in Body Sensor Networks (ed. Yang, G.-Z.) 301–354 (Springer, 2014).

  • Muzammal, M., Talat, R., Sodhro, A. H. & Pirbhulal, S. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Inf. Fusion 53, 155–164 (2020).

    Article 

    Google Scholar
     

  • Gravina, R., Alinia, P., Ghasemzadeh, H. & Fortino, G. Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf. Fusion 35, 68–80 (2017).

    Article 

    Google Scholar
     

  • Tamura, T., Maeda, Y., Sekine, M. & Yoshida, M. Wearable photoplethysmographic sensors—past and present. Electronics (Basel) 3, 282–302 (2014).

    MATH 

    Google Scholar
     

  • Mathie, M. J., Coster, A. C. F., Lovell, N. H. & Celler, B. G. Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiol. Meas. 25, R1–R20 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wicaksono, I. et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flexible Electron. 4, 5 (2020).

    Article 

    Google Scholar
     

  • Shi, J. et al. Smart textile‐integrated microelectronic systems for wearable applications. Adv. Mater. 32, e1901958 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Electronic textiles for wearable point-of-care systems. Chem. Rev. 122, 3259–3291 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yan, W. et al. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv. Mater. 31, e1802348 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yan, W. et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Bayindir, M., Abouraddy, A. F., Arnold, J., Joannopoulos, J. D. & Fink, Y. Thermal‐sensing fiber devices by multimaterial codrawing. Adv. Mater. 18, 845–849 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41, 35–42 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Yan, W. et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gumennik, A. et al. All‐in‐fiber chemical sensing. Adv. Mater. 24, 6005–6009 (2012).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pan, Z. et al. All-in-one stretchable coaxial-fiber strain sensor integrated with high-performing supercapacitor. Energy Storage Mater. 25, 124–130 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Qu, Y. et al. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv. Mater. 30, e1707251 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Xiong, T. et al. Photo-powered all-in-one energy harvesting and storage fibers towards low-carbon smart wearables. Energy Storage Mater. 65, 103146 (2024).

    Article 

    Google Scholar
     

  • Khudiyev, T. et al. Thermally drawn rechargeable battery fiber enables pervasive power. Mater. Today 52, 80–89 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Dong, C. et al. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat. Commun. 11, 3537 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hwang, S. et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13, 3173 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Danto, S., Ruff, Z., Wang, Z., Joannopoulos, J. D. & Fink, Y. Ovonic memory switching in multimaterial fibers. Adv. Funct. Mater. 21, 1095–1101 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Danto, S. et al. Fiber field‐effect device via in situ channel crystallization. Adv. Mater. 22, 4162–4166 (2010).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 1–9 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wang, Z. et al. High-quality semiconductor fibres via mechanical design. Nature 626, 72–78 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Agcayazi, T., Chatterjee, K., Bozkurt, A. & Ghosh, T. K. Flexible interconnects for electronic textiles. Adv. Mater. Technol. 3, 1700277 (2018).

  • Stanley, J., Hunt, J. A., Kunovski, P. & Wei, Y. A review of connectors and joining technologies for electronic textiles. Eng. Rep. 4, e12491 (2022).

  • Marion, J. S. et al. Thermally drawn highly conductive fibers with controlled elasticity. Adv. Mater. 34, e2201081 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Poincloux, S., Adda-Bedia, M. & Lechenault, F. Geometry and elasticity of a knitted fabric. Phys. Rev. X 8, 021075 (2018).

    CAS 
    MATH 

    Google Scholar
     

  • Chen, S. et al. Exploring the relationship between applied fabric strain and resultant local yarn strain within the elastic fabric based on finite element method. J. Mater. Sci. 55, 10258–10270 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Morton, W. E. & Hearle, J. W. S. Physical Properties of Textile Fibres (Woodhead Publishing, 2008).

    Book 
    MATH 

    Google Scholar
     

  • Iqbal, W., Jiang, Y., Qi, Y. & Xu, L. Yarn damage evaluation in the flat knitting process. AUTEX Res. J. 21, 272–283 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Boussu, F., Trifigny, N., Cochrane, C. & Koncar, V. in Smart Textiles and Their Applications 375–400 (Elsevier, 2016).

  • Brunnschweiler, D. The structure and tensile properties of braids. J. Text. Inst. Trans. 45, T55–T77 (1954).

    Article 
    MATH 

    Google Scholar
     

  • Rawal, A., Saraswat, H. & Kumar, R. Tensile response of tubular braids with an elastic core. Composites, Part A: Appl. Sci. Manuf. 47, 150–155 (2013).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Siitonen, S., Laakkonen, P., Vahimaa, P., Kuittinen, M. & Tossavainen, N. White LED light coupling into light guides with diffraction gratings. Appl. Opt. 45, 2623–2630 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Miller, J. M., de Beaucoudrey, N., Chavel, P., Turunen, J. & Cambril, E. Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection. Appl. Opt. 36, 5717–5727 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cornacchia, M., Ozcan, K., Zheng, Y. & Velipasalar, S. A survey on activity detection and classification using wearable sensors. IEEE Sens. J. 17, 386–403 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Loke, G. et al. Computing fabrics. Matter 2, 786–788 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Guo, Y. et al. Polymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfaces. ACS Nano 11, 6574–6585 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Loke, G., Yan, W., Khudiyev, T., Noel, G. & Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32, e1904911 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Branscomb, D., Beale, D. & Broughton, R. New directions in braiding. J. Eng. Fibers Fabr. 8, 11–24 (2013).

  • Lalitha, V. & Srinivasan, K. A review of Manchester, Miller, and FM0 encoding techniques. Smart Comput. Rev. 4, 481–490 (2014).

  • Yurtman, A. & Barshan, B. Activity recognition invariant to sensor orientation with wearable motion sensors. Sensors 17, 1838 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gupta, N., Cheung, H. & Payra, S. Fibre Computer Repository. Zenodo https://doi.org/10.5281/zenodo.13874664 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments