Thursday, August 21, 2025
No menu items!
HomeNatureA novel bacterial protein family that catalyses nitrous oxide reduction

A novel bacterial protein family that catalyses nitrous oxide reduction

  • Tian, H. et al. Global nitrous oxide budget (1980–2020). Earth Syst. Sci. Data 16, 2543–2604 (2024).

    ADS 

    Google Scholar
     

  • Sanford, R. A. et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl Acad. Sci. USA 109, 19709 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, C. M., Graf, D. R. H., Bru, D., Philippot, L. & Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink. ISME J. 7, 417–426 (2013).

    PubMed 

    Google Scholar
     

  • Hallin, S., Philippot, L., Löffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 26, 43 (2018).

    PubMed 

    Google Scholar
     

  • Hiis, E. G. et al. Unlocking bacterial potential to reduce farmland N2O emissions. Nature 630, 421–428 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, G. & Löffler, F. E. Nitrogen-hungry bacteria added to farm soil curb greenhouse-gas emissions. Nature 630, 310–311 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • Core Writing Team. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Lee, H. & Romero, J.) (IPCC, 2023).

  • Smith, C., Hill, A. K. & Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020).


    Google Scholar
     

  • Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Phil. Trans. R. Soc. B 368, 20130164 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritter, S. K. The Haber–Bosch reaction: an early chemical impact on sustainability. Chem. Eng. News 86, 53 (2008).


    Google Scholar
     

  • Gong, C. et al. Global net climate effects of anthropogenic reactive nitrogen. Nature 632, 557–563 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, E. et al. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. Sci. Adv. 7, eabb7118 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. Ammonium-derived nitrous oxide is a global source in streams. Nat. Commun. 15, 4085 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buessecker, S. et al. Coupled abiotic-biotic cycling of nitrous oxide in tropical peatlands. Nat. Ecol. Evol. 6, 1881–1890 (2022).

    PubMed 

    Google Scholar
     

  • Si, Y. et al. Direct biological fixation provides a freshwater sink for N2O. Nat. Commun. 14, 6775 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, G., Hong, H., Lin, W. & Ji, Q. Substrate competition of diazotrophic nitrous oxide assimilation over dinitrogen fixation. J. Geophys. Res. Biogeosci. 129, e2024JG008187 (2024).


    Google Scholar
     

  • Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    ADS 
    PubMed 

    Google Scholar
     

  • Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023).

    ADS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. pH selects for distinct N2O-reducing microbiomes in tropical soil microcosms. ISME Commun. 4, ycae070 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, W. & Skolnick, J. How well is enzyme function conserved as a function of pairwise sequence identity. J. Mol. Biol. 333, 863–882 (2003).

    PubMed 

    Google Scholar
     

  • Rost, B. Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94 (1999).

    PubMed 

    Google Scholar
     

  • Song, Y.-J. et al. Structural and functional insights into PpgL, a metal-independent β-propeller gluconolactonase that contributes to Pseudomonas aeruginosa virulence. Infect. Immun. 87, e00847-18 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pomowski, A., Zumft, W. G., Kroneck, P. M. H. & Einsle, O. N2O binding at a [4Cu:2S] copper–sulphur cluster in nitrous oxide reductase. Nature 477, 234–237 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • He, G. et al. Sustained bacterial N2O reduction at acidic pH. Nat. Commun. 15, 4092 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshinari, T. & Knowles, R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun. 69, 705–710 (1976).

    PubMed 

    Google Scholar
     

  • Gao, Y. et al. Competition for electrons favours N2O reduction in denitrifying Bradyrhizobium isolates. Environ. Microbiol. 23, 2244–2259 (2021).

    PubMed 

    Google Scholar
     

  • Ollivier, B., Cord-Ruwisch, R., Lombardo, A. & Garcia, J.-L. Isolation and characterization of Sporomusa acidovorans sp. nov., a methylotrophic homoacetogenic bacterium. Arch. Microbiol. 142, 307–310 (1985).


    Google Scholar
     

  • Pomowski, A. et al. Revisiting the metal sites of nitrous oxide reductase in a low-dose structure from Marinobacter nauticus. J. Biol. Inorg. Chem. 29, 279–290 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller, C. et al. Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature 608, 626–631 (2022).

    ADS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, C. & Tampé, R. Structural and mechanistic principles of ABC transporters. Annu. Rev. Biochem. 89, 605–636 (2020).

    PubMed 

    Google Scholar
     

  • Orellana, L. H., Rodriguez-R, L. M. & Konstantinidis, K. T. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 45, e14 (2016).

    PubMed Central 

    Google Scholar
     

  • Schneider, L. K. & Einsle, O. Role of calcium in secondary structure stabilization during maturation of nitrous oxide reductase. Biochemistry 55, 1433–1440 (2016).

    PubMed 

    Google Scholar
     

  • Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    PubMed 

    Google Scholar
     

  • Ma, B. et al. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat. Commun. 14, 7318 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci. Data 9, 305 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graf, D. R. H., Jones, C. M. & Hallin, S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE 9, e114118 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saghaï, A., Pold, G., Jones, C. M. & Hallin, S. Phyloecology of nitrate ammonifiers and their importance relative to denitrifiers in global terrestrial biomes. Nat. Commun. 14, 8249 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pavlopoulos, G. A. et al. Unraveling the functional dark matter through global metagenomics. Nature 622, 594–602 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, D., Seshadri, R., Kyrpides, N. C. & Ivanova, N. N. A metagenomic perspective on the microbial prokaryotic genome census. Sci. Adv. 11, eadq2166 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimoshige, H., Kobayashi, H., Shimamura, S., Miyazaki, M. & Maekawa, T. Fundidesulfovibrio magnetotacticus sp. nov., a sulphate-reducing magnetotactic bacterium, isolated from sediments and freshwater of a pond. Int. J. Syst. Evol. Microbiol. https://doi.org/10.1099/ijsem.0.005516 (2022).

  • Liu, Y., Balkwill, D. L., Aldrich, H. C., Drake, G. R. & Boone, D. R. Characterization of the anaerobic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. Int. J. Syst. Evol. Microbiol. 49, 545–556 (1999).


    Google Scholar
     

  • Harmsen, H. J. M. et al. Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int. J. Syst. Evol. Microbiol. 48, 1383–1387 (1998).


    Google Scholar
     

  • Jiang, Q. et al. Cold seeps are potential hotspots of deep-sea nitrogen loss driven by microorganisms across 21 phyla. Nat. Commun. 16, 1646 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spieck, E., Keuter, S., Wenzel, T., Bock, E. & Ludwig, W. Characterization of a new marine nitrite oxidizing bacterium, Nitrospina watsonii sp. nov., a member of the newly proposed phylum “Nitrospinae”. Syst. Appl. Microbiol. 37, 170–176 (2014).

    PubMed 

    Google Scholar
     

  • Kop, L. F. M., Koch, H., Jetten, M. S. M., Daims, H. & Lücker, S. Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME Commun. 4, ycad017 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosley, O. E. et al. Nitrogen cycling and microbial cooperation in the terrestrial subsurface. ISME J. 16, 2561–2573 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosley, O. E., Gios, E. & Handley, K. M. Implications for nitrogen and sulfur cycles: phylogeny and niche-range of Nitrospirota in terrestrial aquifers. ISME Commun. 4, ycae047 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortin, S. G., Sun, X., Jayakumar, A. & Ward, B. B. Nitrite-oxidizing bacteria adapted to low-oxygen conditions dominate nitrite oxidation in marine oxygen minimum zones. ISME J. 18, wrae160 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e1021 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kruse, T. et al. Comparative genomics of the genus Desulfitobacterium. FEMS Microbiol. Ecol. 93, fix135 (2017).


    Google Scholar
     

  • Jones, C. M. et al. Phenotypic and genotypic heterogeneity among closely related soil-borne N2– and N2O-producing Bacillus isolates harboring the nosZ gene. FEMS Microbiol. Ecol. 76, 541–552 (2011).

    PubMed 

    Google Scholar
     

  • Jones, C. M., Stres, B., Rosenquist, M. & Hallin, S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol. Biol. Evol. 25, 1955–1966 (2008).

    PubMed 

    Google Scholar
     

  • Neukirchen, S., Pereira, I. A. C. & Sousa, F. L. Stepwise pathway for early evolutionary assembly of dissimilatory sulfite and sulfate reduction. ISME J. 17, 1680–1692 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, R. L. & Schmidt, T. M. Shallow breathing: bacterial life at low O2. Nat. Rev. Microbiol. 11, 205–212 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnum, T. P. et al. Predicting microbial growth conditions from amino acid composition. Preprint at bioRxiv https://doi.org/10.1101/2024.03.22.586313 (2024).

  • Das, A., Silaghi-Dumitrescu, R., Ljungdahl, L. G. & Kurtz, D. M. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J. Bacteriol. 187, 2020–2029 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Anammox coupled with photocatalyst for enhanced nitrogen removal and the activated aerobic respiration of anammox bacteria based on cbb3-type cytochrome c oxidase. Environ. Sci. Tech. 57, 17910–17919 (2023).


    Google Scholar
     

  • Heidelberg, J. F. et al. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 22, 554–559 (2004).

    PubMed 

    Google Scholar
     

  • Yin, Y. et al. Nitrous oxide inhibition of methanogenesis represents an underappreciated greenhouse gas emission feedback. ISME J. 18, wrae027 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Y. et al. Nitrous oxide is a potent inhibitor of bacterial reductive dechlorination. Environ. Sci. Technol. 53, 692 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, D., Kim, H. & Yoon, S. Nitrous oxide reduction by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27. Appl. Environ. Microbiol. 83, e00502-17 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Truchon Alicia, N. et al. Plant-pathogenic Ralstonia phylotypes evolved divergent respiratory strategies and behaviors to thrive in xylem. mBio 14, e03188-22 (2023).

  • Karthikeyan, S. et al. Metagenomic characterization of soil microbial communities in the Luquillo experimental forest (Puerto Rico) and implications for nitrogen cycling. Appl. Environ. Microbiol. 87, e00546–00521 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Löffler, F. E., Sanford, R. A. & Ritalahti, K. M. Enrichment, cultivation, and detection of reductively dechlorinating bacteria. Methods Enzymol. 397, 77–111 (2005).

    PubMed 

    Google Scholar
     

  • Yan, J. et al. Purinyl-cobamide is a native prosthetic group of reductive dehalogenases. Nat. Chem. Biol. 14, 8–14 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Krakau, S., Straub, D., Gourlé, H., Gabernet, G. & Nahnsen, S. nf-core/mag: a best-practice pipeline for metagenome hybrid assembly and binning. NAR Genom. Bioinformatics 4, lqac007 (2022).


    Google Scholar
     

  • Andrews, S. FastQC: a quality control tool for high throughput sequence data. Babraham Institute https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    PubMed 

    Google Scholar
     

  • Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2015).

    PubMed 

    Google Scholar
     

  • Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 20, 1203–1212 (2023).

    PubMed 

    Google Scholar
     

  • Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2019).

    PubMed Central 

    Google Scholar
     

  • Konstantinidis, K. et al. FastAAI: efficient estimation of genome average amino acid identity and phylum-level relationships using tetramers of universal proteins. Nucleic Acids Res. 53, gkaf348 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).


    Google Scholar
     

  • Humphreys, J. R., Daniel, R. & Poehlein, A. Genome sequence of the homoacetogenic, Gram-negative, endospore-forming bacterium Sporomusa acidovorans DSM 3132. Genome Announc. 5, 00981-17.

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    PubMed 

    Google Scholar
     

  • Hunt, M. et al. Circlator: automated circularization of genome assemblies using long sequencing reads. Genome Biol. 16, 294 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wick, R. R. & Holt, K. E. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput. Biol. 18, e1009802 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolmogorov, M. et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat. Methods 17, 1103–1110 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hackl, T., Ankenbrand, M., van Adrichem, B., Wilkins, D. & Haslinger, K. gggenomes: effective and versatile visualizations for comparative genomics. Preprint at https://doi.org/10.48550/arXiv.2411.13556 (2024).

  • Aroney, S. T. et al. CoverM: Read alignment statistics for metagenomics. Bioinformatics 41, btaf147 (2025).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilkinson, L. ggplot2: Elegant Graphics for Data Analysis by WICKHAM, H. Biometrics 67, 678–679 (2011).


    Google Scholar
     

  • Gerhardt, K., Ruiz-Perez, C. A., Rodriguez-R, L. M., Conrad, R. E. & Konstantinidis, K. T. RecruitPlotEasy: an advanced read recruitment plot tool for assessing metagenomic population abundance and genetic diversity. Front. Bioinformatics 1, 826701 (2022).


    Google Scholar
     

  • Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, R. et al. Protein complex prediction with AlphaFold-Multimer. Preprint at bioRxiv https://doi.org/10.1101/2021.10.04.463034 (2022).

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    PubMed 

    Google Scholar
     

  • Batth, T. S. et al. Protein aggregation capture on microparticles enables multipurpose proteomics sample preparation. Mol. Cell. Proteom. 18, 1027–1035 (2019).


    Google Scholar
     

  • Dorfer, V. et al. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J. Proteome Res. 13, 3679–3684 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, L. et al. ggmsa: a visual exploration tool for multiple sequence alignment and associated data. Brief. Bioinform. 23, bbac222 (2022).

    PubMed 

    Google Scholar
     

  • Moi, D. et al. Structural phylogenetics unravels the evolutionary diversification of communication systems in gram-positive bacteria and their viruses. Preprint at bioRxiv https://doi.org/10.1101/2023.09.19.558401 (2023).

  • Köster, J. & Rahmann, S. Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28, 2520–2522 (2012).

    PubMed 

    Google Scholar
     

  • Gilchrist, C. L. M. et al. cblaster: a remote search tool for rapid identification and visualization of homologous gene clusters. Bioinform. Adv. 1, vbab016 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilchrist, C. L. M. & Chooi, Y.-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).

    PubMed 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, T. et al. itol.toolkit accelerates working with iTOL (Interactive Tree of Life) by an automated generation of annotation files. Bioinformatics 39, btad339 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics pipelines. Nat. Biotechnol. 38, 276–278 (2020).

    PubMed 

    Google Scholar
     

  • Boyd, J. A., Woodcroft, B. J. & Tyson, G. W. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 46, e59–e59 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformormatics 11, 538 (2010).


    Google Scholar
     

  • Saghaï, A. Phyloecology of nitrate ammonifiers and their relative importance with denitrifiers in global terrestrial biomes. Zenodo https://doi.org/10.5281/zenodo.8026657 (2023).

  • Yoon, S., Nissen, S., Park, D., Sanford, R. A. & Löffler, F. E. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Appl. Environ. Microbiol. 82, 3793 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).

    ADS 

    Google Scholar
     

  • Ludbrook, J. Multiple comparison procedures updated. Clin. Exp. Pharmacol. Physiol. 25, 1032–1037 (1998).

    PubMed 

    Google Scholar
     

  • Zhang, L., Wüst, A., Prasser, B., Müller, C. & Einsle, O. Functional assembly of nitrous oxide reductase provides insights into copper site maturation. Proc. Natl Acad. Sci. USA 116, 12822–12827 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    PubMed 

    Google Scholar
     

  • Murali, R. et al. Diversity and evolution of nitric oxide reduction in bacteria and archaea. Proc. Natl Acad. Sci. USA 121, e2316422121 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments