Sun, L. et al. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices. Sci. Adv. 10, eadk9460 (2024).
Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).
Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).
Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3, 944–952 (2018).
Shin, J. et al. Wireless, soft sensors of skin hydration with designs optimized for rapid, accurate diagnostics of dermatological health. Adv. Healthc. Mater. 12, e2202021 (2023).
Lee, J., Kim, D., Sul, H. & Ko, S. H. Thermo-haptic materials and devices for wearable virtual and augmented reality. Adv. Funct. Mater. 31, 2007376 (2021).
Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).
Kang, B. B., Choi, H., Lee, H. & Cho, K.-J. Exo-glove poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system. Soft Robot. 6, 214–227 (2019).
Fluhr, J. W., Feingold, K. R. & Elias, P. M. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp. Dermatol. 15, 483–492 (2006).
Berenguer, C. V., Pereira, F., Pereira, J. A. M. & Camara, J. S. Volatilomics: an emerging and promising avenue for the detection of potential prostate cancer biomarkers. Cancers 14, 3982 (2022).
Shirasu, M. & Touhara, K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J. Biochem. 150, 257–266 (2011).
Peabody, J. L., Willis, M. M., Gregory, G. A., Tooley, W. H. & Lucey, J. F. Clinical limitations and advantages of transcutaneous oxygen electrodes. Acta Anaesthesiol. Scand. 68, 76–82 (1978).
Araviiskaia, E. et al. The impact of airborne pollution on skin. J. Eur. Acad. Dermatol. Venereol. 33, 1496–1505 (2019).
Zhong, B., Jiang, K., Wang, L. & Shen, G. Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms and designs. Adv. Sci. 9, e2103257 (2022).
Baker, L. B. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med. 47, 111–128 (2017).
Alexander, H., Brown, S., Danby, S. & Flohr, C. Research techniques made simple: transepidermal water loss measurement as a research tool. J. Invest. Dermatol. 138, 2295–2300 (2018).
Tagami, H., Kobayashi, H. & Kikuchi, K. A portable device using a closed chamber system for measuring transepidermal water loss: comparison with the conventional method. Skin Res. Technol. 8, 7–12 (2002).
Klotz, T., Ibrahim, A., Maddern, G., Caplash, Y. & Wagstaff, M. Devices measuring transepidermal water loss: a systematic review of measurement properties. Skin Res. Technol. 28, 497–539 (2022).
Imhof, R. E. et al. New instrument for measuring water vapor flux density from arbitrary surfaces. IFSCC Mag. 5, 297–301 (2002).
Sung, S. I. et al. Insensible water loss during the first week of life of extremely low birth weight infants less than 25 gestational weeks under high humidification. Neonatal Med. 20, 51–57 (2013).
Cramer, M. N., Gagnon, D., Laitano, O. & Crandall, C. G. Human temperature regulation under heat stress in health, disease, and injury. Physiol. Rev. 102, 1907–1989 (2022).
Sethi, S., Nanda, R. & Chakraborty, T. Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin. Microbiol. Rev. 26, 462–475 (2013).
Thomas, A. N. et al. Novel noninvasive identification of biomarkers by analytical profiling of chronic wounds using volatile organic compounds. Wound Repair Reg. 18, 391–400 (2010).
Nilsson, G. E. Measurement of water exchange through skin. Med. Biol. Eng. Comput. 15, 209–218 (1977).
Meyer, A. Evaporation from Lakes and Reservoirs: A Study Based on Fifty Years’ Weather Bureau Records (Minnesota Resources Commission, 1942).
Stockdale, M. Water diffusion coefficients versus water activity in stratum corneum: a correlation and its implications. J. Soc. Cosmet. Chem. 29, 625–639 (1978).
Merlivat, L. Molecular diffusivities of H2 16O, HD16O, and H2 18O in gases. J. Chem. Phys. 69, 2864–2871 (1978).
Jansen, L. H., Hojyo‐Tomoko, M. T. & Kligman, A. M. Improved fluorescence staining technique for estimating turnover of the human stratum corneum. Br. J. Dermatol. 90, 9–12 (1974).
Scales, K. & Pilsworth, J. The importance of fluid balance in clinical practice. Nurs. Stand. 22, 50 (2008).
Perren, A., Markmann, M., Merlani, G., Marone, C. & Merlani, P. Fluid balance in critically ill patients. Should we really rely on it? Minerva Anestesiol. 77, 802–811 (2011).
Taylor, N. A. S. & Machado-Moreira, C. A. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem. Physiol. Med. 2, 4 (2013).
Yamada, Y. et al. Variation in human water turnover associated with environmental and lifestyle factors. Science 378, 909–915 (2022).
Fitzgerald, L. R. Cutaneous respiration in man. Physiol. Rev. 37, 325–336 (1957).
Troccaz, M. et al. Mapping axillary microbiota responsible for body odours using a culture-independent approach. Microbiome 3, 3 (2015).
Martin, A. et al. A functional ABCC11 allele is essential in the biochemical formation of human axillary odor. J. Invest. Dermatol. 130, 529–540 (2010).
Leyden, J. J. et al. The microbiology of the human axilla and its relationship to axillary odor. J. Invest. Dermatol. 77, 413–416 (1981).
Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).
Barrozo, R. B. & Lazzari, C. R. The Rresponse of the blood-sucking bug Triatoma infestans to carbon dioxide and other host odours. Chem. Senses 29, 319–329 (2004).
Eberhard, P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth. Analg. 105, S48–S52 (2007).
Huss-Marp, J. et al. Influence of short-term exposure to airborne Der p 1 and volatile organic compounds on skin barrier function and dermal blood flow in patients with atopic eczema and healthy individuals. Clin. Exp. Allergy 36, 338–345 (2006).
Lapuerta, M., Hernández, J. P. & Agudelo, J. R. An equation for the estimation of alcohol-air diffusion coefficients for modelling evaporation losses in fuel systems. Appl. Therm. Eng. 73, 539–548 (2014).
Weschler, C. J. & Nazaroff, W. W. Dermal uptake of organic vapors commonly found in indoor air. Environ. Sci. Technol. 48, 1230–1237 (2014).
Berner, B. et al. Ethanol: water mutually enhanced transdermal therapeutic system II: skin permeation of ethanol and nitroglycerin. J. Pharm. Sci. 78, 402–407 (1989).
Lachenmeier, D. W. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J. Occup. Med. Toxicol. 3, 26 (2008).
Morliere, P., Moysan, A. & Tirache, I. Action spectrum for UV-induced lipid peroxidation in cultured human skin fibroblasts. Free Radic. Biol. Med. 19, 365–371 (1995).
Kochevar, I. E. UV-induced protein alterations and lipid oxidation in erythrocyte membranes. Photochem. Photobiol. 52, 795–800 (1990).
Morgado, P. I., Aguiar-Ricardo, A. & Correia, I. J. Asymmetric membranes as ideal wound dressings: an overview on production methods, structure, properties and performance relationship. J. Memb. Sci. 490, 139–151 (2015).
Galiano, R. D., Michaels, J. V, Dobryansky, M., Levine, J. P. & Gurtner, G. C. Quantitative and reproducible murine model of excisional wound healing. Wound Rep. Reg. 12, 485–492 (2004).
Hu, S. C.-S. & Lan, C.-C. E. High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing. J. Dermatol. Sci. 84, 121–127 (2016).
Sandilands, A., Sutherland, C., Irvine, A. D. & McLean, W. H. I. Filaggrin in the frontline: role in skin barrier function and disease. J. Cell Sci. 122, 1285–1294 (2009).
Furuse, M. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 156, 1099–1111 (2002).
Duffy, E. & Morrin, A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. Trends Anal. Chem. 111, 163–172 (2019).
Reinke, J. M. & Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 49, 35–43 (2012).
Ashrafi, M. et al. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections. Wound Repair Regen. 25, 574–590 (2017).
Rempel, D. M., Amirtharajah, M. & Descatha, A. CURRENT Occupational and Environmental Medicine 5th edn (McGraw Hill, 2014).
Moore, C. et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc. Natl Acad. Sci. USA 110, E3225–E3234 (2013).
Linz, M. S., Mattappallil, A., Finkel, D. & Parker, D. Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics 12, 557 (2023).
Pearson, K. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philos. Trans. R. Soc. Lond. A 187, 253–318 (1896).
Student. The probable error of a mean. Biometrika 6, 1–25 (1908).
Draper, N. R. & Smith, H. Applied Regression Analysis 3rd edn (Wiley, 1998).
Shin, J., Song, J., Cho, S., Rogers, J. A non-contact wearable device for monitoring epidermal molecular flux. Dryad https://doi.org/10.5061/dryad.bk3j9kdp7 (2025).
Shin, J., Song, J., Cho, S., Rogers, J. A non-contact wearable device for monitoring epidermal molecular flux. Zenodo https://doi.org/10.5281/zenodo.14884409 (2025).