Saturday, April 12, 2025
No menu items!
HomeNatureA non-contact wearable device for monitoring epidermal molecular flux

A non-contact wearable device for monitoring epidermal molecular flux

  • Sun, L. et al. All-solution-processed ultraflexible wearable sensor enabled with universal trilayer structure for organic optoelectronic devices. Sci. Adv. 10, eadk9460 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, H. U. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 26, 418–429 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koh, A. et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8, 366ra165 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyein, H. Y. Y. et al. A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3, 944–952 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin, J. et al. Wireless, soft sensors of skin hydration with designs optimized for rapid, accurate diagnostics of dermatological health. Adv. Healthc. Mater. 12, e2202021 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, J., Kim, D., Sul, H. & Ko, S. H. Thermo-haptic materials and devices for wearable virtual and augmented reality. Adv. Funct. Mater. 31, 2007376 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, B. B., Choi, H., Lee, H. & Cho, K.-J. Exo-glove poly II: a polymer-based soft wearable robot for the hand with a tendon-driven actuation system. Soft Robot. 6, 214–227 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fluhr, J. W., Feingold, K. R. & Elias, P. M. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp. Dermatol. 15, 483–492 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Berenguer, C. V., Pereira, F., Pereira, J. A. M. & Camara, J. S. Volatilomics: an emerging and promising avenue for the detection of potential prostate cancer biomarkers. Cancers 14, 3982 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirasu, M. & Touhara, K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J. Biochem. 150, 257–266 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peabody, J. L., Willis, M. M., Gregory, G. A., Tooley, W. H. & Lucey, J. F. Clinical limitations and advantages of transcutaneous oxygen electrodes. Acta Anaesthesiol. Scand. 68, 76–82 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Araviiskaia, E. et al. The impact of airborne pollution on skin. J. Eur. Acad. Dermatol. Venereol. 33, 1496–1505 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, B., Jiang, K., Wang, L. & Shen, G. Wearable sweat loss measuring devices: from the role of sweat loss to advanced mechanisms and designs. Adv. Sci. 9, e2103257 (2022).

    Article 

    Google Scholar
     

  • Baker, L. B. Sweating rate and sweat sodium concentration in athletes: a review of methodology and intra/interindividual variability. Sports Med. 47, 111–128 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, H., Brown, S., Danby, S. & Flohr, C. Research techniques made simple: transepidermal water loss measurement as a research tool. J. Invest. Dermatol. 138, 2295–2300 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tagami, H., Kobayashi, H. & Kikuchi, K. A portable device using a closed chamber system for measuring transepidermal water loss: comparison with the conventional method. Skin Res. Technol. 8, 7–12 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Klotz, T., Ibrahim, A., Maddern, G., Caplash, Y. & Wagstaff, M. Devices measuring transepidermal water loss: a systematic review of measurement properties. Skin Res. Technol. 28, 497–539 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imhof, R. E. et al. New instrument for measuring water vapor flux density from arbitrary surfaces. IFSCC Mag. 5, 297–301 (2002).


    Google Scholar
     

  • Sung, S. I. et al. Insensible water loss during the first week of life of extremely low birth weight infants less than 25 gestational weeks under high humidification. Neonatal Med. 20, 51–57 (2013).

    Article 

    Google Scholar
     

  • Cramer, M. N., Gagnon, D., Laitano, O. & Crandall, C. G. Human temperature regulation under heat stress in health, disease, and injury. Physiol. Rev. 102, 1907–1989 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sethi, S., Nanda, R. & Chakraborty, T. Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin. Microbiol. Rev. 26, 462–475 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, A. N. et al. Novel noninvasive identification of biomarkers by analytical profiling of chronic wounds using volatile organic compounds. Wound Repair Reg. 18, 391–400 (2010).

    Article 

    Google Scholar
     

  • Nilsson, G. E. Measurement of water exchange through skin. Med. Biol. Eng. Comput. 15, 209–218 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, A. Evaporation from Lakes and Reservoirs: A Study Based on Fifty Years’ Weather Bureau Records (Minnesota Resources Commission, 1942).

  • Stockdale, M. Water diffusion coefficients versus water activity in stratum corneum: a correlation and its implications. J. Soc. Cosmet. Chem. 29, 625–639 (1978).


    Google Scholar
     

  • Merlivat, L. Molecular diffusivities of H216O, HD16O, and H218O in gases. J. Chem. Phys. 69, 2864–2871 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jansen, L. H., Hojyo‐Tomoko, M. T. & Kligman, A. M. Improved fluorescence staining technique for estimating turnover of the human stratum corneum. Br. J. Dermatol. 90, 9–12 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scales, K. & Pilsworth, J. The importance of fluid balance in clinical practice. Nurs. Stand. 22, 50 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Perren, A., Markmann, M., Merlani, G., Marone, C. & Merlani, P. Fluid balance in critically ill patients. Should we really rely on it? Minerva Anestesiol. 77, 802–811 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, N. A. S. & Machado-Moreira, C. A. Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem. Physiol. Med. 2, 4 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamada, Y. et al. Variation in human water turnover associated with environmental and lifestyle factors. Science 378, 909–915 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitzgerald, L. R. Cutaneous respiration in man. Physiol. Rev. 37, 325–336 (1957).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Troccaz, M. et al. Mapping axillary microbiota responsible for body odours using a culture-independent approach. Microbiome 3, 3 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, A. et al. A functional ABCC11 allele is essential in the biochemical formation of human axillary odor. J. Invest. Dermatol. 130, 529–540 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leyden, J. J. et al. The microbiology of the human axilla and its relationship to axillary odor. J. Invest. Dermatol. 77, 413–416 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baker, L. B. Physiology of sweat gland function: the roles of sweating and sweat composition in human health. Temperature 6, 211–259 (2019).

    Article 

    Google Scholar
     

  • Barrozo, R. B. & Lazzari, C. R. The Rresponse of the blood-sucking bug Triatoma infestans to carbon dioxide and other host odours. Chem. Senses 29, 319–329 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Eberhard, P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth. Analg. 105, S48–S52 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Huss-Marp, J. et al. Influence of short-term exposure to airborne Der p 1 and volatile organic compounds on skin barrier function and dermal blood flow in patients with atopic eczema and healthy individuals. Clin. Exp. Allergy 36, 338–345 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lapuerta, M., Hernández, J. P. & Agudelo, J. R. An equation for the estimation of alcohol-air diffusion coefficients for modelling evaporation losses in fuel systems. Appl. Therm. Eng. 73, 539–548 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Weschler, C. J. & Nazaroff, W. W. Dermal uptake of organic vapors commonly found in indoor air. Environ. Sci. Technol. 48, 1230–1237 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berner, B. et al. Ethanol: water mutually enhanced transdermal therapeutic system II: skin permeation of ethanol and nitroglycerin. J. Pharm. Sci. 78, 402–407 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lachenmeier, D. W. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity. J. Occup. Med. Toxicol. 3, 26 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morliere, P., Moysan, A. & Tirache, I. Action spectrum for UV-induced lipid peroxidation in cultured human skin fibroblasts. Free Radic. Biol. Med. 19, 365–371 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kochevar, I. E. UV-induced protein alterations and lipid oxidation in erythrocyte membranes. Photochem. Photobiol. 52, 795–800 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morgado, P. I., Aguiar-Ricardo, A. & Correia, I. J. Asymmetric membranes as ideal wound dressings: an overview on production methods, structure, properties and performance relationship. J. Memb. Sci. 490, 139–151 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Galiano, R. D., Michaels, J. V, Dobryansky, M., Levine, J. P. & Gurtner, G. C. Quantitative and reproducible murine model of excisional wound healing. Wound Rep. Reg. 12, 485–492 (2004).

    Article 

    Google Scholar
     

  • Hu, S. C.-S. & Lan, C.-C. E. High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing. J. Dermatol. Sci. 84, 121–127 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sandilands, A., Sutherland, C., Irvine, A. D. & McLean, W. H. I. Filaggrin in the frontline: role in skin barrier function and disease. J. Cell Sci. 122, 1285–1294 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furuse, M. et al. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J. Cell Biol. 156, 1099–1111 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duffy, E. & Morrin, A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. Trends Anal. Chem. 111, 163–172 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Reinke, J. M. & Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 49, 35–43 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ashrafi, M. et al. Volatile organic compound detection as a potential means of diagnosing cutaneous wound infections. Wound Repair Regen. 25, 574–590 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Rempel, D. M., Amirtharajah, M. & Descatha, A. CURRENT Occupational and Environmental Medicine 5th edn (McGraw Hill, 2014).

  • Moore, C. et al. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc. Natl Acad. Sci. USA 110, E3225–E3234 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linz, M. S., Mattappallil, A., Finkel, D. & Parker, D. Clinical impact of Staphylococcus aureus skin and soft tissue infections. Antibiotics 12, 557 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pearson, K. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and panmixia. Philos. Trans. R. Soc. Lond. A 187, 253–318 (1896).

    Article 
    ADS 

    Google Scholar
     

  • Student. The probable error of a mean. Biometrika 6, 1–25 (1908).

    Article 

    Google Scholar
     

  • Draper, N. R. & Smith, H. Applied Regression Analysis 3rd edn (Wiley, 1998).

  • Shin, J., Song, J., Cho, S., Rogers, J. A non-contact wearable device for monitoring epidermal molecular flux. Dryad https://doi.org/10.5061/dryad.bk3j9kdp7 (2025).

  • Shin, J., Song, J., Cho, S., Rogers, J. A non-contact wearable device for monitoring epidermal molecular flux. Zenodo https://doi.org/10.5281/zenodo.14884409 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments