Friday, September 5, 2025
No menu items!
HomeNatureA nanobody specific to prefusion glycoprotein B neutralizes HSV-1 and HSV-2

A nanobody specific to prefusion glycoprotein B neutralizes HSV-1 and HSV-2

  • James, C. et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull. World Health Organ. 98, 315–329 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heldwein, E. E. & Krummenacher, C. Entry of herpesviruses into mammalian cells. Cell. Mol. Life Sci. 65, 1653–1668 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cooper, R. S., Georgieva, E. R., Borbat, P. P., Freed, J. H. & Heldwein, E. E. Structural basis for membrane anchoring and fusion regulation of the herpes simplex virus fusogen gB. Nat. Struct. Mol. Biol. 25, 416–424 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Prefusion structure of human cytomegalovirus glycoprotein B and structural basis for membrane fusion. Sci. Adv. 7, eabf3178 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, C. L. et al. Prefusion-stabilized SARS-CoV-2 S2-only antigen provides protection against SARS-CoV-2 challenge. Nat. Commun. 15, 1553 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crank, M. C. et al. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365, 505–509 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hsieh, C. L. et al. Structure-based design of prefusion-stabilized human metapneumovirus fusion proteins. Nat. Commun. 13, 1299 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutten, L. et al. Structure-based design of prefusion-stabilized filovirus glycoprotein trimers. Cell Rep. 30, 4540–4550 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Loomis, R. J. et al. Structure-based design of nipah virus vaccines: a generalizable approach to paramyxovirus immunogen development. Front. Immunol. 11, 842 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krarup, A. et al. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat. Commun. 6, 8143 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • Rutten, L. et al. A universal approach to optimize the folding and stability of prefusion-closed HIV-1 envelope trimers. Cell Rep. 23, 584–595 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sanders, R. W. et al. HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science 349, aac4223 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowen, J. E. et al. SARS-CoV-2 spike conformation determines plasma neutralizing activity elicited by a wide panel of human vaccines. Sci. Immunol. 7, eadf1421 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Vollmer, B. et al. The prefusion structure of herpes simplex virus glycoprotein B. Sci. Adv. 6, eabc1726 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sponholtz, M. R. et al. Structure-based design of a soluble human cytomegalovirus glycoprotein B antigen stabilized in a prefusion-like conformation. Proc. Natl Acad. Sci. USA 121, e2404250121 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Si, Z. et al. Different functional states of fusion protein gB revealed on human cytomegalovirus by cryo electron tomography with Volta phase plate. PLoS Pathog. 14, e1007452 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi, X. S., Dormitzer, P. R., Liu, W. & Liu, Y. Novel druggable regions in the human cytomegalovirus glycoprotein B polypeptide and methods of use thereof. US patent 20240299587A1 (2022).

  • Bender, F. C. et al. Antigenic and mutational analyses of herpes simplex virus glycoprotein B reveal four functional regions. J. Virol. 81, 3827–3841 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cairns, T. M. et al. Mechanism of neutralization of herpes simplex virus by antibodies directed at the fusion domain of glycoprotein B. J. Virol. 88, 2677–2689 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, L. et al. Targeting herpesvirus entry complex and fusogen glycoproteins with prophylactic and therapeutic agents. Trends Microbiol. 31, 788–804 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, L., Ali, M., Kousoulas, K., Huo, B. & Banks, T. Domain structure of herpes simplex virus 1 glycoprotein B: neutralizing epitopes map in regions of continuous and discontinuous residues. Virology 172, 11–24 (1989).

    CAS 
    PubMed 

    Google Scholar
     

  • Guttler, T. et al. Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J. 40, e107985 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huo, J. et al. A potent SARS-CoV-2 neutralising nanobody shows therapeutic efficacy in the Syrian golden hamster model of COVID-19. Nat. Commun. 12, 5469 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeev-Ben-Mordehai, T., Vasishtan, D., Siebert, C. A., Whittle, C. & Grunewald, K. Extracellular vesicles: a platform for the structure determination of membrane proteins by Cryo-EM. Structure 22, 1687–1692 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeev-Ben-Mordehai, T. et al. Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein B. Proc. Natl Acad. Sci. USA 113, 4176–4181 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frey, S. & Gorlich, D. A new set of highly efficient, tag-cleaving proteases for purifying recombinant proteins. J. Chromatogr. A 1337, 95–105 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Ebel, H., Benecke, T. & Vollmer, B. Stabilisation of viral membrane fusion proteins in prefusion conformation by structure-based design for structure determination and vaccine development. Viruses 14, 1816 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vallbracht, M. et al. In vitro viral evolution identifies a critical residue in the alphaherpesvirus fusion glycoprotein B ectodomain that controls gH/gL-independent entry. mBio 12, e00557-21 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elegheert, J. et al. Lentiviral transduction of mammalian cells for fast, scalable and high-level production of soluble and membrane proteins. Nat. Protoc. 13, 2991–3017 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlson, M. L. et al. The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. eLife 7, e34085 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heldwein, E. E. et al. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313, 217–220 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stampfer, S. D., Lou, H. A., Cohen, G. H., Eisenberg, R. J. & Heldwein, E. E. Structural basis of local, pH-dependent conformational changes in glycoprotein B from herpes simplex virus type 1. J. Virol. 84, 12924–12933 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oliver, S. L. et al. A glycoprotein B-neutralizing antibody structure at 2.8 Å uncovers a critical domain for herpesvirus fusion initiation. Nat. Commun. 11, 4141 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burke, H. G. & Heldwein, E. E. Crystal structure of the human cytomegalovirus glycoprotein B. PLoS Pathog. 11, 21 (2015).


    Google Scholar
     

  • Backovic, M., Longnecker, R. & Jardetzky, T. S. Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B. Proc. Natl Acad. Sci. USA 106, 2880–2885 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Serris, A. et al. The hantavirus surface glycoprotein lattice and its fusion control mechanism. Cell 183, 442–456 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hannah, B. P. et al. Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J. Virol. 83, 6825–6836 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pleiner, T. et al. Nanobodies: site-specific labeling for super-resolution imaging, rapid epitope-mapping and native protein complex isolation. eLife 4, e11349 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Satoh, T. et al. PILR alpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B. Cell 132, 935–944 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fukui, A. et al. Dual impacts of a glycan shield on the envelope glycoprotein B of HSV-1: evasion from human antibodies in vivo and neurovirulence. mBio 14, e0099223 (2023).

    PubMed 

    Google Scholar
     

  • McCallum, M. & Veesler, D. Computational design of prefusion-stabilized Herpesvirus gB trimers. Preprint at bioRxiv https://doi.org/10.1101/2024.10.23.619923 (2024).

  • Hellert, J. et al. Structure of the prefusion-locking broadly neutralizing antibody RVC20 bound to the rabies virus glycoprotein. Nat. Commun. 11, 596 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callaway, H. M. et al. Structure of the rabies virus glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Sci. Adv. 8, eabp9151 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harris, L. J., Larson, S. B., Hasel, K. W. & McPherson, A. Refined structure of an intact IgG2a monoclonal antibody. Biochemistry 36, 1581–1597 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Dai, X. & Zhou, Z. H. Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 360, eaao7298 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Mastronarde, D. N. SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc. Microanal. 9, 1182–1183 (2003).

    ADS 

    Google Scholar
     

  • Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature 628, 450–457 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. 66, 486–501 (2010).

    CAS 

    Google Scholar
     

  • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. 66, 22–25 (2010).

    CAS 

    Google Scholar
     

  • Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr. D 77, 1282–1291 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Beton, J. G., Mulvaney, T., Cragnolini, T. & Topf, M. Cryo-EM structure and B-factor refinement with ensemble representation. Nat. Commun. 15, 444 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Olek, M. & Joseph, A. P. Cryo-EM map-based model validation using the false discovery rate approach. Front. Mol. Biosci. 8, 652530 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chojnowski, G. et al. findMySequence: a neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM. IUCrJ 9, 86–97 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Meng, E. C. et al. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 32, e4792 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Madeira, F. et al. The EMBL-EBI Job Dispatcher sequence analysis tools framework in 2024. Nucleic Acids Res. 52, W521–W525 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdar, W. S. & Thornton, J. M. Protein–protein interfaces: analysis of amino acid conservation in homodimers. Proteins 42, 108–124 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Valdar, W. S. Scoring residue conservation. Proteins 48, 227–241 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Cragnolini, T. et al. TEMPy2: a Python library with improved 3D electron microscopy density-fitting and validation workflows. Acta Crystallogr. D 77, 41–47 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Touw, W. G. et al. A series of PDB-related databanks for everyday needs. Nucleic Acids Res. 43, D364–D368 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kartal, Ö., Andres, F., Lai, M. P., Nehme, R. & Cottier, K. waveRAPID—a robust assay for high-throughput kinetic screens with the Creoptix WAVEsystem. SLAS Discov. 26, 995–1003 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments