Thursday, October 23, 2025
No menu items!
HomeNatureA metallic p-wave magnet with commensurate spin helix

A metallic p-wave magnet with commensurate spin helix

  • Ahn, K.-H., Hariki, A., Lee, K.-W. & Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).


    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).


    Google Scholar
     

  • Ezawa, M. Third-order and fifth-order nonlinear spin-current generation in g-wave and i-wave altermagnets and perfectly nonreciprocal spin current in f-wave magnets. Phys. Rev. B 111, 125420 (2025).

  • Yu, Y. et al. Odd-parity magnetism driven by antiferromagnetic exchange. Phys. Rev. Lett. 135, 046701 (2025).

  • Hirsch, J. E. Spin-split states in metals. Phys. Rev. B 41, 6820–6827 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • Wu, C., Sun, K., Fradkin, E. & Zhang, S.-C. Fermi liquid instabilities in the spin channel. Phys. Rev. B 75, 115103 (2007).

    ADS 

    Google Scholar
     

  • Jung, J., Polini, M. & MacDonald, A. H. Persistent current states in bilayer graphene. Phys. Rev. B 91, 155423 (2015).

    ADS 

    Google Scholar
     

  • Kiselev, E. I., Scheurer, M. S., Wölfle, P. & Schmalian, J. Limits on dynamically generated spin-orbit coupling: absence of l = 1 Pomeranchuk instabilities in metals. Phys. Rev. B 95, 125122 (2017).

    ADS 

    Google Scholar
     

  • Wu, Y.-M., Klein, A. & Chubukov, A. V. Conditions for l = 1 Pomeranchuk instability in a Fermi liquid. Phys. Rev. B 97, 165101 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Hellenes, A. B. et al. P-wave magnets. Preprint at https://arxiv.org/abs/2309.01607 (2024).

  • Jungwirth, T. et al. From superfluid 3He to altermagnets. Preprint at https://arxiv.org/abs/2411.00717 (2024).

  • Ezawa, M. Purely electrical detection of the spin-splitting vector in p-wave magnets based on linear and nonlinear conductivities. Phys. Rev. B 112, 125412 (2025).

  • Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ezawa, M. Topological insulators and superconductors based on p-wave magnets: electrical control and detection of a domain wall. Phys. Rev. B 110, 165429 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Gladyshevskii, R. E., Strusievicz, O. R., Cenzual, K. & Parthé, E. Structure of Gd3Ru4Al12, a new member of the EuMg5.2 structure family with minority-atom clusters. Acta Crystallogr. B 49, 474–478 (1993).

    ADS 

    Google Scholar
     

  • Niermann, J. & Jeitschko, W. Ternary rare earth (R) transition metal aluminides R3T4Al12 (T = Ru and Os) with Gd3Ru4Al12 type structure. Z. Anorg. Allg. Chem. 628, 2549–2556 (2002).

    CAS 

    Google Scholar
     

  • Nakamura, S. et al. Spin trimer formation in the metallic compound Gd3Ru4Al12 with a distorted kagome lattice structure. Phys. Rev. B 98, 054410 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Matsumura, T., Ozono, Y., Nakamura, S., Kabeya, N. & Ochiai, A. Helical ordering of spin trimers in a distorted kagomé lattice of Gd3Ru4Al12 studied by resonant X-ray diffraction. J. Phys. Soc. Jpn 88, 023704 (2019).

    ADS 

    Google Scholar
     

  • Lovesey, S. W. & Collins, S. P. X-ray Scattering and Absorption by Magnetic Materials Oxford Series on Synchrotron Radiation No. 1 (Clarendon Press, Oxford Univ. Press, 1996).

  • McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    ADS 

    Google Scholar
     

  • Okumura, S., Kato, Y. & Motome, Y. Lock-in of a chiral soliton lattice by itinerant electrons. J. Phys. Soc. Jpn 87, 033708 (2018).

    ADS 

    Google Scholar
     

  • Hodt, E. W., Bentmann, H. & Linder, J. Fate of p-wave spin polarization in helimagnets with Rashba spin-orbit coupling. Phys. Rev. B 111, 205416 (2025)

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

    ADS 

    Google Scholar
     

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).

    CAS 

    Google Scholar
     

  • Park, P. et al. Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2. Nat. Commun. 14, 8346 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

    ADS 

    Google Scholar
     

  • Hedayati, A. A. & Salehi, M. Transverse spin current at normal-metal /p-wave magnet junctions. Phys. Rev. B 111, 035404 (2025).

  • Álvarez Pari, N. A., Jaeschke-Ubiergo, R., Chakraborty, A., Šmejkal, L. & Sinova, J. Nonrelativistic linear Edelstein effect in helical EuIn2As2. Phys. Rev. B 112, 024404 (2025).

  • Choy, T. P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin–orbit coupling. Phys. Rev. B 84, 195442 (2011).

    ADS 

    Google Scholar
     

  • Martin, I. & Morpurgo, A. F. Majorana fermions in superconducting helical magnets. Phys. Rev. B 85, 144505 (2012).

    ADS 

    Google Scholar
     

  • Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).

    ADS 

    Google Scholar
     

  • Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • Maeda, K., Lu, B., Yada, K. & Tanaka, Y. Theory of tunneling spectroscopy in unconventional p-wave magnet-superconductor hybrid structures. J. Phys. Soc. Jpn 93, 114703 (2024).

    ADS 

    Google Scholar
     

  • Song, Q. et al. Electrical switching of a p-wave magnet. Nature 642, 64–70 (2025).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Harmon, B., Antropov, V., Liechtenstein, A., Solovyev, I. & Anisimov, V. Calculation of magneto-optical properties for 4f systems: LSDA + Hubbard U results. J. Phys. Chem. Solids 56, 1521–1524 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • Shick, A. B., Liechtenstein, A. I. & Pickett, W. E. Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 60, 10763–10769 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Yamada, R. Dataset for: A metallic p-wave magnet with commensurate spin helix. Zenodo https://doi.org/10.5281/zenodo.17035626 (2025).

  • Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    CAS 

    Google Scholar
     

  • Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 12, 572 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. H. et al. Transition from anomalous Hall effect to topological Hall effect in hexagonal non-collinear magnet Mn3Ga. Sci. Rep. 7, 515 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayashi, H. et al. Large anomalous Hall effect observed in the cubic-lattice antiferromagnet Mn3Sb with kagome lattice. Phys. Rev. B 108, 075140 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Zuniga-Cespedes, B. E. et al. Observation of an anomalous Hall effect in single-crystal Mn3Pt. New J. Phys. 25, 023029 (2023).

    ADS 

    Google Scholar
     

  • Sürgers, C. et al. Anomalous Nernst effect in the noncollinear antiferromagnet Mn5Si3. Commun. Mater. 5, 176 (2024).


    Google Scholar
     

  • Kotegawa, H. et al. Large anomalous Hall effect and unusual domain switching in an orthorhombic antiferromagnetic material NbMnP. npj Quantum Mater. 8, 56 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Kotegawa, H. et al. Large spontaneous Hall effect with flexible domain control in the antiferromagnetic material TaMnP. Phys. Rev. B 110, 214417 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Kotegawa, H. et al. Large anomalous Hall conductivity derived from an f-electron collinear antiferromagnetic structure. Phys. Rev. Lett. 133, 106301 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments