Friday, April 18, 2025
No menu items!
HomeNatureA Jurassic acanthocephalan illuminates the origin of thorny-headed worms

A Jurassic acanthocephalan illuminates the origin of thorny-headed worms

  • Kennedy, C. R. Ecology of the Acanthocephala (Cambridge Univ. Press, 2006).

  • Van Cleave, H. J. Relationships of the Acanthocephala. Am. Nat. 75, 31–47 (1941).

    Article 

    Google Scholar
     

  • Conway Morris, S. & Crompton, D. W. T. The origins and evolution of the Acanthocephala. Biol. Rev. 57, 85–115 (1982).

    Article 

    Google Scholar
     

  • Ahlrichs, W. H. Epidermal ultrastructure of Seison nebaliae and Seison annulatus, and a comparison of epidermal structures within the Gnathifera. Zoomorphology 117, 41–48 (1997).

    Article 

    Google Scholar
     

  • Garey, J. R., Near, T. J., Nonnemacher, M. R. & Nadler, S. A. Molecular evidence for Acanthocephala as a subtaxon of Rotifera. J. Mol. Evol. 43, 287–292 (1996).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Herlyn, H., Piskurek, O., Schmitz, J., Ehlers, U. & Zischler, H. The syndermatan phylogeny and the evolution of acanthocephalan endoparasitism as inferred from 18S rDNA sequences. Mol. Phylogenet. Evol. 26, 155–164 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Sørensen, M. V. & Giribet, G. A modern approach to rotiferan phylogeny: combining morphological and molecular data. Mol. Phylogenet. Evol. 40, 585–608 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wey-Fabrizius, A. R. et al. Transcriptome data reveal syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage. PLoS ONE 9, e88618 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laumer, C. E. et al. Spiralian phylogeny informs the evolution of microscopic lineages. Curr. Biol. 25, 2000–2006 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Sielaff, M. et al. Phylogeny of Syndermata (syn. Rotifera): mitochondrial gene order verifies epizoic Seisonidea as sister to endoparasitic Acanthocephala within monophyletic Hemirotifera. Mol. Phylogenet. Evol. 96, 79–92 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cardia, D. F. F., Bertini, R. J., Camossi, L. G. & Letizio, L. A. First record of Acanthocephala parasites eggs in coprolites preliminary assigned to Crocodyliformes from the Adamantina Formation (Bauru Group, Upper Cretaceous), São Paulo, Brazil. An. Acad. Bras. Ciênc. 91, e20170848 (2019).

    Article 

    Google Scholar
     

  • Smith, M. R., Harvey, T. H. P. & Butterfield, N. J. The macro- and microfossil record of the Cambrian priapulid. Ottoia. Palaeontology 58, 705–721 (2015).

    Article 

    Google Scholar
     

  • Giribet, G. & Edgecombe, G. D. Current understanding of Ecdysozoa and its internal phylogenetic relationships. Integr. Comp. Biol. 57, 455–466 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, M. R. A palaeoscolecid worm from the Burgess Shale. Palaeontology 58, 973–979 (2015).

    Article 

    Google Scholar
     

  • Palm, H. W. The Trypanorhyncha Diesing, 1863 (PKSPL-IPB, 2004).

  • Wang, S. et al. High-resolution taphonomic and palaeoecological analyses of the Jurassic Yanliao Biota of the Daohugou area, northeastern China. Palaeogeogr. Palaeoclim. Palaeoecol. 530, 200–216 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yang, J., Smith, M. R., Zhang, X.-G. & Yang, X.-Y. Introvert and pharynx of Mafangscolex, a Cambrian palaeoscolecid. Geol. Mag. 157, 2044–2050 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Howard, R. J., Parry, L. A., Clatworthy, I., D’Souza, L. & Edgecombe, G. D. Palaeoscolecids from the Ludlow Series of Leintwardine, Herefordshire (UK): the latest occurrence of palaeoscolecids in the fossil record. Pap. Palaeontol. 10, e1558 (2024).

    Article 

    Google Scholar
     

  • Luo, C. et al. Exceptional preservation of a marine tapeworm tentacle in Cretaceous amber. Geology 52, 497–501 (2024).

    Article 

    Google Scholar
     

  • Fonseca, M. C. G. D. et al. Acanthocephalan parasites of the flounder species Paralichthys isosceles, Paralichthys patagonicus and Xystreurys rasile from Brazil. Rev. Bras. Parasitol. V. 28, 346–359 (2019).

    Article 

    Google Scholar
     

  • Bekkouche, N. & Gąsiorowski, L. Careful amendment of morphological data sets improves phylogenetic frameworks: re-evaluating placement of the fossil Amiskwia sagittiformis. J. Syst. Palaeontol. 20, 1–14 (2022).

    Article 

    Google Scholar
     

  • Herlyn, H. in The Evolution and Fossil Record of Parasitism: Identification and Macroevolution of Parasites (eds De Baets, K. & Huntley, J. W.) 273–313 (Springer International Publishing, 2021).

  • Ahlrichs, W. H. Zur Ultrastruktur und Phylogenie von Seison nebaliae Grube, 1859 und Seison annulatus Claus, 1876. Hypothesen zu phylogenetischen Verwandtschaftsverhältnissen innerhalb der Bilateria (Georg-August-Univ., 1995).

  • Vasilikopoulos, A. et al. Whole-genome analyses converge to support the Hemirotifera hypothesis within Syndermata (Gnathifera). Hydrobiologia 851, 2795–2826 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Melone, G., Ricci, C., Segers, H. & Wallace, R. L. Phylogenetic relationships of phylum Rotifera with emphasis on the families of Bdelloidea. Hydrobiologia 387, 101–107 (1998).

    Article 

    Google Scholar
     

  • Mauer, K. M. et al. Genomics and transcriptomics of epizoic Seisonidea (Rotifera, syn. Syndermata) reveal strain formation and gradual gene loss with growing ties to the host. BMC Genomics 22, 604 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagemann, L., Mauer, K. M., Hankeln, T., Schmidt, H. & Herlyn, H. Nuclear genome annotation of wheel animals and thorny-headed worms: inferences about the last common ancestor of Syndermata (Rotifera s.l.). Hydrobiologia 851, 2827–2844 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ferraguti, M. & Melone, G. Spermiogenesis in Seison nebaliae (Rotifera, Seisonidea): further evidence of a rotifer-acanthocephalan relationship. Tissue Cell 31, 428–440 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Struck, T. H. et al. Platyzoan paraphyly based on phylogenomic data supports a noncoelomate ancestry of Spiralia. Mol. Biol. Evol. 31, 1833–1849 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Clément, P. The phylogeny of rotifers: molecular, ultrastructural and behavioural data. Hydrobiologia 255, 527–544 (1993).

    Article 

    Google Scholar
     

  • Ricci, C. Are lemnisci and proboscis present in the Bdelloidea? Hydrobiologia 387, 93–96 (1998).

    Article 

    Google Scholar
     

  • Sørensen, M. V. On the evolution and morphology of the rotiferan trophi, with a cladistic analysis of Rotifera. J. Zool. Syst. Evol. Res. 40, 129–154 (2002).

    Article 

    Google Scholar
     

  • Koch, N. M. & Parry, L. A. Death is on our side: paleontological data drastically modify phylogenetic hypotheses. Syst. Biol. 69, 1052–1067 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • De Baets, K., Dentzien-Dias, P., Harrison, G. W. M., Littlewood, D. T. J. & Parry, L. A. in The Evolution and Fossil Record of Parasitism: Identification and Macroevolution of Parasites (eds De Baets, K. & Huntley, J. W.) 231–271 (Springer International Publishing, 2021).

  • Verweyen, L., Klimpel, S. & Palm, H. W. Molecular phylogeny of the Acanthocephala (class Palaeacanthocephala) with a paraphyletic assemblage of the orders Polymorphida and Echinorhynchida. PLoS ONE 6, e28285 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinther, J. & Parry, L. A. Bilateral jaw elements in Amiskwia sagittiformis bridge the morphological gap between gnathiferans and chaetognaths. Curr. Biol. 29, 881–888 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Park, T.-Y. S. et al. A giant stem-group chaetognath. Sci. Adv. 10, eadi6678 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sullivan, C. et al. The vertebrates of the Jurassic Daohugou Biota of northeastern China. J. Vertebr. Paleontol. 34, 243–280 (2014).

    Article 

    Google Scholar
     

  • Hejnol, A. in Evolutionary Developmental Biology of Invertebrates 2: Lophotrochozoa (Spiralia) (ed. Wanninger, A.) 1–12 (Springer, 2015).

  • Ricci, C., Melone, G. & Sotgia, C. Old and new data on Seisonidea (Rotifera). Hydrobiologia 255, 495–511 (1993).

    Article 

    Google Scholar
     

  • Haustein, T., Lawes, M., Harris, E. & Chiodini, P. L. An eye-catching acanthocephalan. Clin. Microbiol. Infec. 16, 787–788 (2010).

    Article 

    Google Scholar
     

  • Nickol, B. B. in Fish Diseases and Disorders, Volume 1: Protozoan and Metazoan Infections (ed. Woo, P. T. K.) 444–465 (CAB International, 2006).

  • Al-Jahdali, M. O., Hassanine, R. M. E.-S. & Touliabah, H. E.-S. The life cycle of Sclerocollum saudii Al-Jahdali, 2010 (Acanthocephala: Palaeacanthocephala: Rhadinorhynchidae) in amphipod and fish hosts from the Red Sea. J. Helminthol. 89, 277–287 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cong, P. et al. Host-specific infestation in early Cambrian worms. Nat. Ecol. Evol. 1, 1465–1469 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Massini, J. G., Escapa, I. H., Guido, D. M. & Channing, A. First glimpse of the silicified hot spring biota from a new Jurassic chert deposit in the Deseado Massif, Patagonia, Argentina. Ameghiniana 53, 205–230 (2016).

    Article 

    Google Scholar
     

  • Southcott, R. V. & Lange, R. T. Acarine and other microfossils from the Maslin Eocene, South Australia. Rec. S. Aust. Mus. 16, 1–21 (1971).


    Google Scholar
     

  • Poinar, G. O. & Ricci, C. Bdelloid rotifers in Dominican amber: evidence for parthenogenetic continuity. Experientia 48, 408–410 (1992).

    Article 

    Google Scholar
     

  • Waggoner, B. M. & Poinar, G. O. Fossil habrotrochid rotifers in Dominican amber. Experientia 49, 354–357 (1993).

    Article 

    Google Scholar
     

  • Near, T. J., Garey, J. R. & Nadler, S. A. Phylogenetic relationships of the Acanthocephala inferred from 18S ribosomal DNA sequences. Mol. Phylogenet. Evol. 10, 287–298 (1998).

    Article 
    PubMed 

    Google Scholar
     

  • Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Swofford, D. L. PAUP*. [Phylogenetic analysis using parsimony (and other methods)] v.4 (Sinauer Associates, 2003).

  • Goloboff, P. A. & Morales, M. E. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics 39, 144–153 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments