Thursday, July 31, 2025
No menu items!
HomeNatureA hypothalamic circuit that modulates feeding and parenting behaviours

A hypothalamic circuit that modulates feeding and parenting behaviours

  • Prentice, A. M. & Prentice, A. Energy costs of lactation. Annu. Rev. Nutr. 8, 63–79 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Fleming, A. S. & Rosenblatt, J. S. Maternal behavior in the virgin and lactating rat. J. Comp. Physiol. Psychol. 86, 957–972 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • Brunton, P. J. & Russell, J. A. The expectant brain: adapting for motherhood. Nat. Rev. Neurosci. 9, 11–25 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Numan, M. & Woodside, B. Maternity: neural mechanisms, motivational processes, and physiological adaptations. Behav. Neurosci. 124, 715–741 (2010).

    PubMed 

    Google Scholar
     

  • Woodside, B., Budin, R., Wellman, M. K. & Abizaid, A. Many mouths to feed: the control of food intake during lactation. Front. Neuroendocrinol. 33, 301–314 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Sohn, J. W., Elmquist, J. K. & Williams, K. W. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 36, 504–512 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, B. H., Kim, M. & Kim, S. Y. Brain circuits for promoting homeostatic and non-homeostatic appetites. Exp. Mol. Med. 54, 349–357 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alcantara, I. C., Tapia, A. P. M., Aponte, Y. & Krashes, M. J. Acts of appetite: neural circuits governing the appetitive, consummatory, and terminating phases of feeding. Nat. Metab. 4, 836–847 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohl, J. Parenting—a paradigm for investigating the neural circuit basis of behavior. Curr. Opin. Neurobiol. 60, 84–91 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burnett, C. J. et al. Hunger-driven motivational state competition. Neuron 92, 187–201 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burnett, C. J. et al. Need-based prioritization of behavior. eLife 8, e44527 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutton, A. K. & Krashes, M. J. Integrating hunger with rival motivations. Trends Endocrinol. Metab. 31, 495–507 (2020).

    CAS 

    Google Scholar
     

  • Barajas-Azpeleta, R., Tastekin, I. & Ribeiro, C. Neuroscience: How the brain prioritizes behaviors. Curr. Biol. 31, R1125–R1127 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Kovac, M. P. & Davis, W. J. Neural mechanism underlying behavioral choice in Pleurobranchaea. J. Neurophysiol. 43, 469–487 (1980).

    CAS 
    PubMed 

    Google Scholar
     

  • Hong, W., Kim, D. W. & Anderson, D. J. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158, 1348–1361 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheriyamkunnel, S. J. et al. A neuronal mechanism controlling the choice between feeding and sexual behaviors in Drosophila. Curr. Biol. 31, 4231–4245.e4 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei, L., Yan, R., Yin, L., Sullivan, R. M. & Lin, D. Antagonistic circuits mediating infanticide and maternal care in female mice. Nature 618, 1006–1016 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Araujo Salgado, I. et al. Toggling between food-seeking and self-preservation behaviors via hypothalamic response networks. Neuron 111, 2899–2917.e6 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marlin, B. J., Mitre, M., D’Amour J, A., Chao, M. V. & Froemke, R. C. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature 520, 499–504 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stolzenberg, D. S. & Champagne, F. A. Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Horm. Behav. 77, 204–210 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Ammari, R. et al. Hormone-mediated neural remodeling orchestrates parenting onset during pregnancy. Science 382, 76–81 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matikainen-Ankney, B. A. et al. An open-source device for measuring food intake and operant behavior in rodent home-cages. eLife 10, e66173 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, K. A. & Cone, R. D. Fasting induces a large, leptin-dependent increase in the intrinsic action potential frequency of orexigenic arcuate nucleus neuropeptide Y/Agouti-related protein neurons. Endocrinology 146, 1043–1047 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Mandelblat-Cerf, Y. et al. Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. eLife 4, e07122 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y., Lin, Y. C., Kuo, T. W. & Knight, Z. A. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 160, 829–841 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betley, J. N. et al. Neurons for hunger and thirst transmit a negative-valence teaching signal. Nature 521, 180–185 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Padilla, S. L. et al. Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state. Nat. Neurosci. 19, 734–741 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alhadeff, A. L. et al. A Neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152.e15 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. Y. et al. AGRP neurons project to the medial preoptic area and modulate maternal nest-building. J. Neurosci. 39, 456–471 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Numan, M. Medial preoptic area and maternal behavior in the female rat. J. Comp. Physiol. Psychol. 87, 746–759 (1974).

    CAS 
    PubMed 

    Google Scholar
     

  • Numan, M., Numan, M. J., Marzella, S. R. & Palumbo, A. Expression of c-fos, fos B, and egr-1 in the medial preoptic area and bed nucleus of the stria terminalis during maternal behavior in rats. Brain Res. 792, 348–352 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Z., Autry, A. E., Bergan, J. F., Watabe-Uchida, M. & Dulac, C. G. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509, 325–330 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kohl, J. et al. Functional circuit architecture underlying parental behaviour. Nature 556, 326–331 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, Y. Y., Yamaguchi, T., Song, S. C., Tritsch, N. X. & Lin, D. A hypothalamic midbrain pathway essential for driving maternal behaviors. Neuron 98, 192–207.e10 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, R. S. E. et al. Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc. Natl Acad. Sci. USA 114, 10779–10784 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshihara, C. et al. Calcitonin receptor signaling in the medial preoptic area enables risk-taking maternal care. Cell Rep. 35, 109204 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betley, J. N., Cao, Z. F., Ritola, K. D. & Sternson, S. M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337–1350 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeNardo, L. A. et al. Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat. Neurosci. 22, 460–469 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cazzulino, A. S., Martinez, R., Tomm, N. K. & Denny, C. A. Improved specificity of hippocampal memory trace labeling. Hippocampus 26, 752–762 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McHenry, J. A. et al. Hormonal gain control of a medial preoptic area social reward circuit. Nat. Neurosci. 20, 449–458 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohki-Hamazaki, H. et al. Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature 390, 165–169 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan, X. M. et al. Antiobesity effect of MK-5046, a novel bombesin receptor subtype-3 agonist. J. Pharmacol. Exp. Ther. 336, 356–364 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Pinol, R. A. et al. Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways. Cell Metab. 33, 1389–1403.e6 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Motta, S. C. et al. Ventral premammillary nucleus as a critical sensory relay to the maternal aggression network. Proc. Natl Acad. Sci. USA 110, 14438–14443 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donato, J. Jr. et al. Lesions of the ventral premammillary nucleus disrupt the dynamic changes in Kiss1 and GnRH expression characteristic of the proestrus-estrus transition. Neuroscience 241, 67–79 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Donato, J. Jr. et al. The ventral premammillary nucleus links fasting-induced changes in leptin levels and coordinated luteinizing hormone secretion. J. Neurosci. 29, 5240–5250 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei, L., Osakada, T. & Lin, D. Hypothalamic control of innate social behaviors. Science 382, 399–404 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, P., Li, C., Haskell-Luevano, C., Cone, R. D. & Smith, M. S. Altered expression of agouti-related protein and its colocalization with neuropeptide Y in the arcuate nucleus of the hypothalamus during lactation. Endocrinology 140, 2645–2650 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • Phillips, C. T. & Palmiter, R. D. Role of agouti-related protein-expressing neurons in lactation. Endocrinology 149, 544–550 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, Y. et al. Changes in mRNA expression of arcuate nucleus appetite-regulating peptides during lactation in rats. J. Mol. Endocrinol. 52, 97–109 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catalbas, K. et al. Hypothalamic AgRP neurons regulate the hyperphagia of lactation. Mol. Metab. 86, 101975 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szymczak-Workman, A. L., Vignali, K. M. & Vignali, D. A. Verification of 2 A peptide cleavage. Cold Spring Harb. Protoc. 2012, 255–257 (2012).

    PubMed 

    Google Scholar
     

  • Raymond, C. S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mickelsen, L. E. et al. Neurochemical heterogeneity among lateral hypothalamic hypocretin/orexin and melanin-concentrating hormone neurons identified through single-cell gene expression analysis. eNeuro https://doi.org/10.1523/ENEURO.0013-17.2017 (2017).

  • Mickelsen, L. E. et al. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. eLife 9, e58901 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saunders, A. et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 174, 1015–1030.e16 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).


    Google Scholar
     

  • Gao, C. et al. Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife 12, e81818 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stirling, D. R. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 22, 433 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alcantara, I. C., Papas, B. N., & Krashes, M. J. Single-cell RNA-sequencing of the ARC and MPOA across satiety and lactation states in female mice. Zenodo https://doi.org/10.5281/zenodo.15319501 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments