Thursday, August 7, 2025
No menu items!
HomeNatureA global humidity index with lateral hydrologic flows

A global humidity index with lateral hydrologic flows

  • Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Sci. Data 9, 409 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jobbagy, E. G., Nosetto, M. D., Villagra, P. E. & Jackson, R. B. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol. Appl. 21, 678–694 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Laughlin, D. C. et al. Rooting depth and xylem vulnerability are independent woody plant traits jointly selected by aridity, seasonality, and water table depth. New Phytol. 240, 1774–1787 (2023).

    PubMed 

    Google Scholar
     

  • Klimešová, J., Martínková, J., Bartušková, A. & Ott, J. P. Belowground plant traits and their ecosystem functions along aridity gradients in grasslands. Plant Soil 487, 39–48 (2023).


    Google Scholar
     

  • Ren, Z. et al. Belowground soil and vegetation components change across the aridity threshold in grasslands. Environ. Res. Lett. 18, 094014 (2023).

    ADS 

    Google Scholar
     

  • Fan, Y. et al. Hillslope hydrology in global change research and earth system modeling. Water Resour. Res. 55, 1737–1772 (2019).

    ADS 

    Google Scholar
     

  • Mattos, C. R. C. et al. Double stress of waterlogging and drought drives forest–savanna coexistence. Proc. Natl Acad. Sci. 120, e2301255120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, A., Nagendra, H., Anand, M. & Bunyan, M. Topographic and bioclimatic determinants of the occurrence of forest and grassland in tropical montane forest-grassland mosaics of the Western Ghats, India. PLoS ONE 10, e0130566 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winter, T. C., Harvey, J. W., Franke, O. L. & Alley, W. M. Ground Water and Surface Water: A Single Resource (U.S. Geological Survey, 1998).

  • Fan, Y. Are catchments leaky? Wiley Interdiscip. Rev. Water 6, e1386 (2019).


    Google Scholar
     

  • Schaller, M. F. & Fan, Y. River basins as groundwater exporters and importers: implications for water cycle and climate modeling. J. Geophys. Res. Atmos. 114, D04103 (2009).

    ADS 

    Google Scholar
     

  • Tóth, J. A theoretical analysis of groundwater flow in small drainage basins. J. Geophys. Res. 68, 4795–4812 (1963).

    ADS 

    Google Scholar
     

  • Bethke, C. M. & Johnson, T. M. Groundwater age and groundwater age dating. Annu. Rev. Earth Planet. Sci. 36, 121–152 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • Fan, Y. Groundwater in the Earth’s critical zone: relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).

    ADS 

    Google Scholar
     

  • Cuthbert, M. O. & Ashley, G. M. A spring forward for hominin evolution in East Africa. PLoS ONE 9, e107358 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, Y. & Miguez-Macho, G. A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim. Dyn. 37, 253–278 (2011).


    Google Scholar
     

  • Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, Y., Miguez-Macho, G., Jobbagy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).

    ADS 
    PubMed 

    Google Scholar
     

  • Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding and wetlands. J. Geophys. Res. Atmos. 117, D15113 (2012).

    ADS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    ADS 

    Google Scholar
     

  • Pastorello, G. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miguez-Macho, G. & Fan, Y. The role of groundwater in the Amazon water cycle: 2. Influence on seasonal soil moisture and evapotranspiration. J. Geophys. Res. Atmos. 117, D15114 (2012).

    ADS 

    Google Scholar
     

  • Lähteenoja, O. & Page, S. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J. Geophys. Res. Biogeosci. 116, G02025 (2011).

    ADS 

    Google Scholar
     

  • McCarthy, T. S. Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J. Hydrol. 320, 264–282 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • Jiménez-Alfaro, B. et al. Habitat-based biodiversity responses to macroclimate and edaphic factors in European fen ecosystems. Glob. Change Biol. 29, 6756–6771 (2023).


    Google Scholar
     

  • Navarro, G., Luebert, F. & Molina, J. A. South American terrestrial biomes as geocomplexes: a geobotanical landscape approach. Veg. Classif. Surv. 4, 75–114 (2023).


    Google Scholar
     

  • Metzen, D. et al. Spatio-temporal transpiration patterns reflect vegetation structure in complex upland terrain. Sci. Total Environ. 694, 133551 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ramberg, L. et al. Species diversity of the Okavango Delta, Botswana. Aquat. Sci. 68, 310–337 (2006).


    Google Scholar
     

  • Freeze, R. A. & Cherry, J. A. Groundwater (Prentice Hall, 1979).

  • Yamazaki, D. et al. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 44, 5844–5853 (2017).

    ADS 

    Google Scholar
     

  • Hodnett, M. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108, 155–180 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Clapp, R. B. & Hornberger, G. M. Empirical equations for some soil hydraulic-properties. Water Resour. Res. 14, 601–604 (1978).

    ADS 

    Google Scholar
     

  • Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).

    ADS 

    Google Scholar
     

  • Shuttleworth, W. J. & Wallace, J. S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 111, 839–855 (1985).

    ADS 

    Google Scholar
     

  • Zhou, M. C. et al. Estimating potential evapotranspiration using Shuttleworth–Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin. J. Hydrol. 327, 151–173 (2006).

    ADS 

    Google Scholar
     

  • Yuan, H., Dai, Y., Xiao, Z., Ji, D. & Shangguan, W. Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sens. Environ. 115, 1171–1187 (2011).

    ADS 

    Google Scholar
     

  • Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 115, Q12004 (2011).


    Google Scholar
     

  • Gleeson, T., Moosdorf, N., Hartmann, J. & van Beek, L. P. H. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).

    ADS 

    Google Scholar
     

  • Jiang, X.-W., Wang, X.-S. & Wan, L. Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. Hydrol. J. 18, 839–850 (2010).

    ADS 

    Google Scholar
     

  • Louis, C. in Rock Mechanics (ed. Müller, L.) 299–387 (Springer, 1972).

  • Athy, L. F. Density, porosity, and compaction of sedimentary rocks. AAPG Bull. 14, 1–24 (1930).

    CAS 

    Google Scholar
     

  • Bedinger, M. S., Langer, W. H. & Reed, J. E. Synthesis of hydraulic properties of rocks with reference to the Basin and Range province, southwestern United States. in United States Geological Survey Water-Supply Paper 2310 (ed. Subitzky, S.) 35–43 (USGS, 1986).

  • Neuzil, C. E. Hydromechanical coupling in geologic processes. Hydrol. J. 11, 41–83 (2003).

    ADS 

    Google Scholar
     

  • Rutqvist, J. & Stephansson, O. The role of hydromechanical coupling in fractured rock engineering. Hydrol. J. 11, 7–40 (2003).

    ADS 

    Google Scholar
     

  • Anderman, E. R. & Hill, M. C. MODFLOW-2000, the U.S. Geological Survey Modular Ground-water Model — Three Additions to the Hydrogeologic-Unit Flow (HUF) Package: Alternative Storage for the Uppermost Active Cells, Flows in Hydrogeologic Units, and the Hydraulic-conductivity Depth-dependence (KDEP) Capability (U.S. Geological Survey, 2003).

  • Vourlitis, G. L. et al. Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resour. Res. 38, 30-31–30-11 (2002).


    Google Scholar
     

  • Global Runoff Data Centre (GRDC). GRDC Major River Basins 2nd rev. ed. (Federal Institute of Hydrology (BfG), 2020).

  • Antico, A., Aguiar, R. O. & Amsler, M. L. Hydrometric data rescue in the Paraná River Basin. Water Resour. Res. 54, 1368–1381 (2018).

    ADS 

    Google Scholar
     

  • Miguez-Macho, G. & Fan, Y. GHI and GHI_topo. Zenodo https://doi.org/10.5281/zenodo.15231648 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments