Thursday, October 30, 2025
No menu items!
HomeNatureA ductile solid electrolyte interphase for solid-state batteries

A ductile solid electrolyte interphase for solid-state batteries

  • Kalnaus, S., Dudney, N. J., Westover, A. S., Herbert, E. & Hackney, S. Solid-state batteries: the critical role of mechanics. Science 381, eabg5998 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alexander, G. V., Shi, C., O’Neill, J. & Wachsman, E. D. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, C. et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wan, H., Wang, Z., Zhang, W., He, X. & Wang, C. Interface design for all-solid-state lithium batteries. Nature 623, 739–744 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hitz, G. T. et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wan, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries. Nat. Energy 9, 386–400 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Yang, K. et al. Determining the role of ion transport throughput in solid-state lithium batteries. Angew. Chem. Int. Ed. 135, e202302586 (2023).

    Article 

    Google Scholar
     

  • Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Yang, K. et al. Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries. J. Am. Chem. Soc. 16, 11371–11381 (2024).


    Google Scholar
     

  • Wan, H. et al. Interface design for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 14, 2303046 (2023).

    Article 

    Google Scholar
     

  • Xu, R. et al. Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 28, 1705838 (2018).

    Article 

    Google Scholar
     

  • Vitos, L., Korzhavyi, P. A. & Johansson, B. Elastic property maps of austenitic stainless steels. Phys. Rev. Lett. 88, 155501 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pugh, S. F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dubl. Philos. Mag. 45, 823–843 (1954).

    Article 
    CAS 

    Google Scholar
     

  • Jin, S. et al. Solid–solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett. 6, 4118–4126 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Pecharromán, C. & Moya, J. S. Experimental evidence of a giant capacitance in insulator–conductor composites at the percolation threshold. Adv. Mater. 12, 294–297 (2000).

    Article 

    Google Scholar
     

  • Qi, L., Lee, B. I., Chen, S., Samuels, W. D. & Exarhos, G. J. High-dielectric-constant silver–epoxy composites as embedded dielectrics. Adv. Mater. 17, 1777–1781 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Krylova, V. & Dukštienė, N. Synthesis and characterization of Ag2S layers formed on polypropylene. J. Chem. 2013, 987879 (2013).

    Article 

    Google Scholar
     

  • Wolan, J. T. & Hoflund, G. B. Surface characterization study of AgF and AgF2 powders using XPS and ISS. Appl. Surf. Sci. 125, 251–258 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shi, X. et al. Room-temperature ductile inorganic semiconductor. Nat. Mater. 17, 421–426 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Z. et al. Combining solid solution strengthening and second phase strengthening for thinning Li metal foils. ACS Nano 17, 14136–14143 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. The lasting impact of formation cycling on the Li-ion kinetics between SEI and the Li-metal anode and its correlation with efficiency. Sci. Adv. 10, eadj8889 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H. et al. Bonded interface enabled durable solid-state lithium metal batteries with ultra-low interfacial resistance of 0.25 Ω cm2. Adv. Funct. Mater. 34, 2407619 (2024).

  • Zhang, X. et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes. Adv. Mater. 31, 1806082 (2019).

    Article 

    Google Scholar
     

  • Deng, T. et al. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 7, 3052–3068 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hu, C. et al. Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 142, 18035–18041 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, Y. et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 12, 2103720 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat. Energy 9, 251–262 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, B. et al. Achieving the high capacity and high stability of Li-rich oxide cathode in garnet-based solid-state battery. Angew. Chem. Int. Ed. 63, e202315856 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Huo, H. et al. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat. Commun. 12, 176 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, Y., Huang, C., Liu, H., Liang, Y. & Fan, L. Z. A high air-stability and Li-metal-compatible Li3+2xP1−xBixS4−1.5xO1.5x sulfide electrolyte for all-solid-state Li-metal batteries. Adv. Funct. Mater. 32, 2205998 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, D. et al. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nat. Commun. 13, 1909 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, L. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, X. et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci. Adv. 4, 2375–7548 (2018).

    Article 

    Google Scholar
     

  • Wang, C. et al. A universal wet-chemistry synthesis of solid-state halide electrolytes for all-solid-state lithium-metal batteries. Sci. Adv. 7, eabh1896 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, S. et al. Manipulation of charge transfer in vertically aligned epitaxial ferroelectric KNbO3 nanowire array photoelectrodes. Nano Energy 35, 92–100 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Y. X. et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2020).

    Article 

    Google Scholar
     

  • Pecharromán, C., Esteban-Betegón, F., Bartolomé, J. F., López-Esteban, S. & Moya, J. S. New percolative BaTiO3–Ni composites with a high and frequency-independent dielectric constant (εr≈80000). Adv. Mater. 13, 1541–1544 (2001).

    Article 

    Google Scholar
     

  • Ding, J. F. et al. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem. Int. Ed. 60, 11442–11447 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shi, P. et al. A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries. Nat. Nanotechnol. 18, 602–610 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Medlin, D. L., Yang, N., Spataru, C. D., Hale, L. M. & Mishin, Y. Unraveling the dislocation core structure at a van der Waals gap in bismuth telluride. Nat. Commun. 10, 1820 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y., Shibata, K. & Mizoguchi, T. A brute-force code searching for cell of non-identical displacement for CSL grain boundaries and interfaces. Comput. Phys. Commun. 273, 108260 (2022).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Xie, Y. et al. InterOptimus: an AI-assisted robust workflow for screening ground-state heterogeneous interface structures in lithium batteries. J. Energy Chem. 106, 631–641 (2025).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments