Friday, August 8, 2025
No menu items!
HomeNatureA diverse and distinct microbiome inside living trees

A diverse and distinct microbiome inside living trees

  • Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    ADS 

    Google Scholar
     

  • Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    ADS 

    Google Scholar
     

  • Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).


    Google Scholar
     

  • Cregger, M. A. et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31 (2018).


    Google Scholar
     

  • Mo, L. et al. Integrated global assessment of the natural forest carbon potential. Nature 624, 92–101 (2023).

    ADS 

    Google Scholar
     

  • Falster, D. S. et al. BAAD: a Biomass And Allometry Database for woody plants. Ecology 96, 1445–1445 (2015).


    Google Scholar
     

  • Andrews, J. H. & Harris, R. F. The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol. 38, 145–180 (2000).


    Google Scholar
     

  • de Habiyaremye, J. D., Goldmann, K., Reitz, T., Herrmann, S. & Buscot, F. Tree root zone microbiome: exploring the magnitude of environmental conditions and host tree impact. Front. Microbiol. 11, 749 (2020).


    Google Scholar
     

  • Sohrabi, R., Paasch, B. C., Liber, J. A. & He, S. Y. Phyllosphere microbiome. Annu. Rev. Plant Biol. 74, 539–568 (2023).


    Google Scholar
     

  • Jeffrey, L. C. et al. Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nat. Commun. 12, 2127 (2021).

    ADS 

    Google Scholar
     

  • Baldrian, P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev. 41, 109–130 (2017).


    Google Scholar
     

  • Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).


    Google Scholar
     

  • Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).


    Google Scholar
     

  • Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 209 (2013).


    Google Scholar
     

  • Yip, D. Z., Veach, A. M., Yang, Z. K., Cregger, M. A. & Schadt, C. W. Methanogenic Archaea dominate mature heartwood habitats of Eastern Cottonwood (Populus deltoides). New Phytol. 222, 115–121 (2019).


    Google Scholar
     

  • Santoyo, G., Moreno-Hagelsieb, G., del Orozco-Mosqueda, M. C. & Glick, B. R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183, 92–99 (2016).


    Google Scholar
     

  • Yadeta, K. A. & J Thomma, B. P. H. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 4, 97 (2013).


    Google Scholar
     

  • Arnold, W. et al. A method for sampling the living wood microbiome. Methods Ecol. Evol. https://doi.org/10.1111/2041-210x.14311 (2024).


    Google Scholar
     

  • Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).


    Google Scholar
     

  • Johnston, S. R., Boddy, L. & Weightman, A. J. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol. Ecol. 92, fiw179 (2016).


    Google Scholar
     

  • Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees – from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).


    Google Scholar
     

  • Morris, H., Brodersen, C., Schwarze, F. W. M. R. & Jansen, S. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Front. Plant Sci. 7, 1665 (2016).


    Google Scholar
     

  • Muhr, J. et al. How fresh is maple syrup? Sugar maple trees mobilize carbon stored several years previously during early springtime sap-ascent. New Phytol. 209, 1410–1416 (2016).


    Google Scholar
     

  • Telichowska, A. et al. Polyphenol content and antioxidant activities of Prunus padus L. and Prunus serotina L. leaves: electrochemical and spectrophotometric approach and their antimicrobial properties. Open Chem. 18, 1125–1135 (2020).


    Google Scholar
     

  • Hofmann, T. et al. Antioxidant and antibacterial properties of Norway Spruce (Picea abies H. Karst.) and Eastern Hemlock (Tsuga canadensis (L.) Carrière) cone extracts. Forests 12, 1189 (2021).


    Google Scholar
     

  • Hardoim Pablo, R. et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).


    Google Scholar
     

  • Song, Z., Kennedy, P. G., Liew, F. J. & Schilling, J. S. Fungal endophytes as priority colonizers initiating wood decomposition. Funct. Ecol. 31, 407–418 (2017).


    Google Scholar
     

  • Lee, J. W. et al. Taxonomic study of the genus Pholiota (Strophariaceae, Basidiomycota) in Korea. Mycobiology 48, 476–483 (2020).


    Google Scholar
     

  • Lodge, D. J. et al. Molecular phylogeny, morphology, pigment chemistry and ecology in Hygrophoraceae (Agaricales). Fungal Divers. 64, 1–99 (2014).


    Google Scholar
     

  • Dahlman, M., Danell, E. & Spatafora, J. W. Molecular systematics of Craterellus: cladistic analysis of nuclear LSU rDNA sequence data. Mycol. Res. 104, 388–394 (2000).


    Google Scholar
     

  • Saikkonen, K., Faeth, S. H., Helander, M. & Sullivan, T. J. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 29, 319–343 (1998).


    Google Scholar
     

  • Rodriguez, R. J., White, J. F. Jr, Arnold, A. E. & Redman, R. S. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330 (2009).


    Google Scholar
     

  • Boddy, L. & Griffith, G. Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 41, 41–73(2011).

  • Shortle, W. C., Menge, J. A. & Cowling, E. B. Interaction of bacteria, decay fungi, and live sapwood in discoloration and decay of trees. Eur. J. Forest Pathol. 8, 293–300 (1978).


    Google Scholar
     

  • Shigo, A. L. & Hillis, W. E. Heartwood, discolored wood, and microorganisms in living trees. Annu. Rev. Phytopathol. 11, 197–222 (1973).


    Google Scholar
     

  • Jensen, K. F. Measuring Oxygen and Carbon Dioxide in Red Oak Trees U.S. Forest Service Research Note NE-74 (U.S. Department of Agriculture, 1967).

  • Hoppe, B. et al. A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Sci. Rep. 5, 9456 (2015).


    Google Scholar
     

  • Covey, K. R. et al. Greenhouse trace gases in deadwood. Biogeochemistry 130, 215–226 (2016).


    Google Scholar
     

  • Estrada-De Los Santos, P., Bustillos-Cristales, R. & Caballero-Mellado, J. Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67, 2790–2798 (2001).

    ADS 

    Google Scholar
     

  • Jo, Y. et al. Changes in microbial community structure in response to gummosis in peach tree bark. Plants 11, 2834 (2022).


    Google Scholar
     

  • Phuengjayaem, S. et al. Sporolactobacillus mangiferae sp. nov., a spore-forming lactic acid bacterium isolated from tree bark in Thailand. Int. J. Syst. Evol. Microbiol. 73, e005993 (2023).

  • Timmusk, S., Grantcharova, N. & Wagner, E. G. H. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol. 71, 7292–7300 (2005).

    ADS 

    Google Scholar
     

  • Tláskal, V., Zrůstová, P., Vrška, T. & Baldrian, P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 93, fix157 (2017).

  • Madhaiyan, M. et al. Jatrophihabitans endophyticus gen. nov., sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L. Int. J. Syst. Evol. Microbiol. 63, 1241–1248 (2013).


    Google Scholar
     

  • Lorentzen, M. P. G. & Lucas, P. M. Distribution of Oenococcus oeni populations in natural habitats. Appl. Microbiol. Biotechnol. 103, 2937–2945 (2019).


    Google Scholar
     

  • Tang, Q., Puri, A., Padda, K. P. & Chanway, C. P. Biological nitrogen fixation and plant growth promotion of lodgepole pine by an endophytic diazotroph Paenibacillus polymyxa and its GFP-tagged derivative. Botany 95, 611–619 (2017).


    Google Scholar
     

  • Putkinen, A. et al. New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing. New Phytol. 231, 524–536 (2021).


    Google Scholar
     

  • Taylor, F. H. Variation in sugar content of maple sap. Vermont Agricultural Experiment Station Bulletin 587, 3–39 (1956).

  • Argiroff, W. A. et al. Seasonality and longer-term development generate temporal dynamics in the Populus microbiome. mSystems 9, e0088623 (2024).


    Google Scholar
     

  • Frank, A. C., Saldierna Guzmán, J. P. & Shay, J. E. Transmission of bacterial endophytes. Microorganisms 5, 70 (2017).


    Google Scholar
     

  • Abdelfattah, A., Tack, A. J. M., Lobato, C., Wassermann, B. & Berg, G. From seed to seed: the role of microbial inheritance in the assembly of the plant microbiome. Trends Microbiol. 31, 346–355 (2023).


    Google Scholar
     

  • Barka, E. A. et al. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev. 80, 1–43 (2016).


    Google Scholar
     

  • Zeikus, J. G. & Ward, J. C. Methane formation in living trees: a microbial origin. Science 184, 1181–1183 (1974).

    ADS 

    Google Scholar
     

  • Schink, B. & Ward, J. C. Microaerobic and anaerobic bacterial activities involved in formation of wetwood and discoloured wood. IAWA J. 5, 105–109 (1984).


    Google Scholar
     

  • Hoch, G., Richter, A. & Körner, C. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 26, 1067–1081 (2003).


    Google Scholar
     

  • Spicer, R. & Holbrook, N. M. Within‐stem oxygen concentration and sap flow in four temperate tree species: does long‐lived xylem parenchyma experience hypoxia? Plant Cell Environ. 28, 192–201 (2005).


    Google Scholar
     

  • Haridas, S. et al. 101 Dothideomycetes genomes: a test case for predicting lifestyles and emergence of pathogens. Stud. Mycol. 96, 141–153 (2020).


    Google Scholar
     

  • Moll, J. et al. Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environ. Microbiol. 20, 3744–3756 (2018).


    Google Scholar
     

  • Rintala, E. et al. Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism. OMICS 15, 461–476 (2011).


    Google Scholar
     

  • Pareek, M., Allaway, W. G. & Ashford, A. E. Armillaria luteobubalina mycelium develops air pores that conduct oxygen to rhizomorph clusters. Mycol. Res. 110, 38–50 (2006).


    Google Scholar
     

  • Carroll, G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 69, 2–9 (1988).


    Google Scholar
     

  • Promputtha, I. et al. A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb. Ecol. 53, 579–590 (2007).

    ADS 

    Google Scholar
     

  • Siegenthaler, A. et al. Temperate tree microbiomes: divergent soil and phyllosphere microbial communities share few but dominant taxa. Plant Soil 496, 319–340 (2024).


    Google Scholar
     

  • Pearce, R. B. Antimicrobial defences in the wood of living trees. New Phytol. 132, 203–233 (1996).


    Google Scholar
     

  • Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. & Dowling, D. N. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278, 1–9 (2008).


    Google Scholar
     

  • Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio 6, e02527–14 (2015).


    Google Scholar
     

  • Lengrand, S., Pesenti, L., Bragard, C. & Legrève, A. Bacterial endophytome sources, profile and dynamics—a conceptual framework. Front. Sustain. Food Syst. 8, e1378436 (2024).

  • De La Fuente, L., Merfa, M. V., Cobine, P. A. & Coleman, J. J. Pathogen adaptation to the xylem environment. Annu. Rev. Phytopathol. 60, 163–186 (2022).


    Google Scholar
     

  • Oses, R., Valenzuela, S., Freer, J., Sanfuentes, E. & Rodriguez, J. Fungal endophytes in xylem of healthy Chilean trees and their possible role in early wood decay. Fungal Divers. 33, 77–86 (2008).


    Google Scholar
     

  • Pfautsch, S. Hydraulic anatomy and function of trees—basics and critical developments. Curr. For. Rep. 2, 236–248 (2016).


    Google Scholar
     

  • Carluccio, G. et al. Xylem embolism and pathogens: can the vessel anatomy of woody plants contribute to X. fastidiosa resistance? Pathogens 12, 825 (2023).


    Google Scholar
     

  • Gora, E. M., Lucas, J. M. & Yanoviak, S. P. Microbial composition and wood decomposition rates vary with microclimate from the ground to the canopy in a tropical forest. Ecosystems 22, 1206–1219 (2019).


    Google Scholar
     

  • Harrison, J. G. & Griffin, E. A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ. Microbiol. 22, 2107–2123 (2020).


    Google Scholar
     

  • Westveld, M. Natural forest vegetation zones of New England. J. For. 54, 332–338 (1956).


    Google Scholar
     

  • Ashton, M. S., Duguid, M. C., Barrett, A. L. & Covey, K. in Forest Plans of North America (eds Siry, J. P. et al.) Ch. 29 (Academic, 2015).

  • Weber, N. et al. Nephele: a cloud platform for simplified, standardized and reproducible microbiome data analysis. Bioinformatics 34, 1411–1413 (2018).


    Google Scholar
     

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).


    Google Scholar
     

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).


    Google Scholar
     

  • Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).


    Google Scholar
     

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS 

    Google Scholar
     

  • Liu, C., Cui, Y., Li, X. & Yao, M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).


    Google Scholar
     

  • Shenhav, L. et al. FEAST: fast expectation-maximization for microbial source tracking. Nat. Methods 16, 627–632 (2019).


    Google Scholar
     

  • Revell, L. J. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12, e16505 (2024).


    Google Scholar
     

  • Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).


    Google Scholar
     

  • Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth. R package version 4.1.0 https://docs.ropensci.org/rnaturalearth/ (2024).

  • Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. For. 36, 454–489 (2017).


    Google Scholar
     

  • McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).


    Google Scholar
     

  • Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. Gigascience 8, giz107 (2019).


    Google Scholar
     

  • Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    ADS 

    Google Scholar
     

  • Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).


    Google Scholar
     

  • Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).


    Google Scholar
     

  • Anderson, M. J. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).


    Google Scholar
     

  • Oksanen, J. et al. vegan: community ecology package. R package version 2.7-1 (2020).

  • Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).


    Google Scholar
     

  • A., T. & Abdul, F. in Cellulose – Fundamental Aspects (ed. Van De Ven, T. G. M.) Ch. 5 (InTech, 2013).

  • Větrovský, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, e57923 (2013).

    ADS 

    Google Scholar
     

  • Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    ADS 

    Google Scholar
     

  • Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments