Sunday, October 6, 2024
No menu items!
HomeNatureA climate threshold for ocean deoxygenation during the Early Cretaceous

A climate threshold for ocean deoxygenation during the Early Cretaceous

  • Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, Q03004 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Raup, D. M. & Sepkoski, J. J. Jr Periodicity of extinctions in the geologic past. Proc. Natl Acad. Sci. 81, 801–805 (1984).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlanger, S. O. & Jenkyns, H. C. Cretaceous oceanic anoxic events: causes and consequences. Geol. Mijnb. 55, 179–184 (1976).


    Google Scholar
     

  • Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Erba, E. & Larson, R. L. The Cismon APTICORE (Southern Alps, Italy): a “reference section” for the Lower Cretaceous at low latitudes. Riv. Ital. Paleontol. Stratigr. 104, 181–191 (1998).


    Google Scholar
     

  • Li, Y.-X. et al. Toward an orbital chronology for the early Aptian oceanic anoxic event (OAE1a, ~120 Ma). Earth Planet. Sci. Lett. 271, 88–100 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Erba, E. et al. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism. Geol. Soc. Am. Spec. Pap. 511, 271–303 (2015).


    Google Scholar
     

  • Penn, J. L. & Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 376, 524–526 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oschlies, A. A committed fourfold increase in ocean oxygen loss. Nat. Commun. 12, 2307 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reershemius, T. & Planavsky, N. J. What controls the duration and intensity of ocean anoxic events in the Paleozoic and the Mesozoic? Earth Sci. Rev. 221, 103787 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Keeling, R. F., Kortzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci. 2, 199–229 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Falkowski, P. G. et al. Ocean deoxygenation: past, present, and future. Eos Trans. Am. Geophys. Union 92, 409–410 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Bottini, C., Cohen, A. S., Erba, E., Jenkyns, H. C. & Coe, A. L. Osmium-isotope evidence for volcanism, weathering, and ocean mixing during the early Aptian OAE 1a. Geology 40, 583–586 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bauer, K. W. et al. Pulsed volcanism and rapid oceanic deoxygenation during Oceanic Anoxic Event 1a. Geology 49, 1452–1456 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Percival, L. et al. Determining the style and provenance of magmatic activity during the Early Aptian Oceanic Anoxic Event (OAE 1a). Global Planet. Change 200, 103461 (2021).

    Article 

    Google Scholar
     

  • Keller, C. E. et al. A volcanically induced climate warming and floral change preceded the onset of OAE1a (Early Cretaceous). Palaeogeogr. Palaeoclimatol. Palaeoecol. 305, 43–49 (2011).

    Article 

    Google Scholar
     

  • Mutterlose, J., Bottini, C., Schouten, S. & Sinninghe Damsté, J. S. High sea-surface temperatures during the early Aptian Oceanic Anoxic Event 1a in the Boreal Realm. Geology 42, 439–442 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blok, C. et al. Latitude-dependant climate changes across the Aptian Oceanic Anoxic Event 1a. Palaeogeogr. Palaeoclimatol. Palaeoecol. 601, 111085 (2022).

    Article 

    Google Scholar
     

  • Bottini, C. et al. Climate variability and ocean fertility during the Aptian Stage. Clim. Past 11, 383–402 (2015).

    Article 

    Google Scholar
     

  • Lechler, M., von Strandmann, P., Jenkyns, H. C., Prosser, G. & Parente, M. Lithium-isotope evidence for enhanced silicate weathering during OAE 1a (Early Aptian Selli event). Earth Planet. Sci. Lett. 432, 210–222 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blattler, C. L., Jenkyns, H. C., Reynard, L. M. & Henderson, G. M. Significant increases in global weathering during Oceanic Anoxic Events 1a and 2 indicated by calcium isotopes. Earth Planet. Sci. Lett. 309, 77–88 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Bauer, K. W. et al. Ferruginous oceans during OAE1a and collapse of the marine sulfate pool. Earth Planet. Sci. Lett. 578, 117324 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Malinverno, A., Erba, E. & Herbert, T. D. Orbital tuning as an inverse problem: chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE. Paleoceanography 25, PA2203 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Dasch, E. J. Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim. Cosmochim. Acta 33, 1521–1552 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, J., An, Z. & Head, J. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat. Res. 51, 215–219 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Grygar, T. M. et al. Lithological correction of chemical weathering proxies based on K, Rb, and Mg contents for isolation of orbital signals in clastic sedimentary archives. Sediment. Geol. 406, 105717 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Steiner, Z. et al. Authigenic formation of clay minerals in the abyssal North Pacific. Global Biogeochem. Cycles 36, e2021GB007270 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Michalopoulos, P. & Aller, R. C. Rapid clay mineral formation in Amazon delta sediments: reverse weathering and oceanic elemental cycles. Science 270, 614–617 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Whitfield, M. The mean oceanic residence time (MORT) concept – a rationalisation. Mar. Chem. 8, 101–123 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Calvert, S. E. & Pedersen, T. F. in Developments in Marine Geology Vol. 1 (ed. Hillaire-Marcel, C.) 567–644 (Elsevier, 2007).

  • Penman, D. E., Rugenstein, J. K. C., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Walker, J. C., Hays, P. & Kasting, J. F. A negative feedback mechanism for the long‐term stabilization of Earth’s surface temperature. J. Geophys. Res. Oceans 86, 9776–9782 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kump, L. R. & Arthur, M. A. in Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.) 399–426 (Springer, 1997).

  • Zeebe, R. E. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4. Geosci. Model Dev. 5, 149–166 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Bauer, K. W., Zeebe, R. E. & Wortmann, U. G. Quantifying the volcanic emissions which triggered Oceanic Anoxic Event 1a and their effect on ocean acidification. Sedimentology 64, 204–214 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tejada, M. L. G. et al. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology 37, 855–858 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Davidson, P. C., Koppers, A. A., Sano, T. & Hanyu, T. A younger and protracted emplacement of the Ontong Java Plateau. Science 380, 1185–1188 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Adloff, M. et al. Unravelling the sources of carbon emissions at the onset of Oceanic Anoxic Event (OAE) 1a. Earth Planet. Sci. Lett. 530, 115947 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Q. et al. Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises. Proc. Natl Acad. Sci. 119, e2202039119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bodin, S., Godet, A., Westermann, S. & Follmi, K. B. Secular change in northwestern Tethyan water-mass oxygenation during the late Hauterivian–early Aptian. Earth Planet. Sci. Lett. 374, 121–131 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hueter, A. et al. Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a. Clim. Past 15, 1327–1344 (2019).

    Article 

    Google Scholar
     

  • Hueter, A. et al. Evaluating the role of coastal hypoxia on the transient expansion of microencruster intervals during the early Aptian. Lethaia 54, 399–418 (2021).

    Article 

    Google Scholar
     

  • Erba, E. & Tremolada, F. Nannofossil carbonate fluxes during the Early Cretaceous: phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia. Paleoceanography 19, PA1008 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Naafs, B. D. A. et al. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a. Nat. Geosci. 9, 135–139 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Herbert, T. D. & Fischer, A. G. Milankovitch climatic origin of mid-Cretaceous black shale rhythms in central Italy. Nature 321, 739–743 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Herbert, T. D., Stallard, R. & Fischer, A. G. Anoxic events, productivity rhythms, and the orbital signature in a Mid‐Cretaceous deep‐sea sequence from central Italy. Paleoceanography 1, 495–506 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Fischer, A. G., Herbert, T. D., Napoleone, G., Premoli Silva, I. & Ripepe, M. Albian pelagic rhythms (Piobbico core). J. Sediment. Res. 61, 1164–1172 (1991).


    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stramma, L. & Schmidtko, S. in Ocean Deoxygenation: Everyone’s Problem. Causes, Impacts, Consequences and Solutions (eds Laffoley, D. & Baxter, J. M.) 23–36 (International Union for Conservation of Nature, 2019).

  • Li, Y.-H. & Schoonmaker, J. E. in Treatise on Geochemistry Vol. 7 (eds Holland, H. D. & Turekian, K. K.) 1–35 (Elsevier, 2003).

  • Condie, K. C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104, 1–37 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nozaki, Y. in Encyclopedia of Ocean Sciences 2354–2366 (Academic, 2001).

  • Heimhofer, U., Hochuli, P. A., Herrle, J. O., Andersen, N. & Weissert, H. Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France). Earth Planet. Sci. Lett. 223, 303–318 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pourmand, A., Dauphas, N. & Ireland, T. J. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 291, 38–54 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tostevin, R. et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem. Geol. 438, 146–162 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lawrence, M. G., Greig, A., Collerson, K. D. & Kamber, B. S. Rare earth element and yttrium variability in South East Queensland waterways. Aquat. Geochem. 12, 39–72 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Barrat, J.-A., Bayon, G. & Lalonde, S. Calculation of cerium and lanthanum anomalies in geological and environmental samples. Chem. Geol. 615, 121202 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bau, M. & Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 79, 37–55 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Naafs, B. & Pancost, R. Sea-surface temperature evolution across Aptian oceanic anoxic event 1a. Geology 44, 959–962 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Menegatti, A. P. et al. High-resolution δ13C stratigraphy through the early Aptian “Livello Selli” of the Alpine Tethys. Paleoceanography 13, 530–545 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Haw, W. W. et al. Alternative global Cretaceous paleogeography. Geol. Soc. Am. Spec. Pap. 332, 1–47 (1999).


    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments