Saturday, January 31, 2026
No menu items!
HomeNatureA cavity-array microscope for parallel single-atom interfacing

A cavity-array microscope for parallel single-atom interfacing

  • Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Walther, H., Varcoe, B. T. H., Englert, B.-G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379 (2015).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Tsai, R. B.-S., Sun, X., Shaw, A. L., Finkelstein, R. & Endres, M. Benchmarking and fidelity response theory of high-fidelity Rydberg entangling gates. PRX Quantum 6, 010331 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622, 268 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Peper, M. et al. Spectroscopy and modeling of 171Yb Rydberg states for high-fidelity two-qubit gates. Phys. Rev. X 15, 011009 (2025).

    CAS 

    Google Scholar
     

  • Radnaev, A. et al. Universal neutral-atom quantum computer with individual optical addressing and nondestructive readout. PRX Quantum 6, 030334 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87 (2005).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Haas, F., Volz, J., Gehr, R., Reichel, J. & Estève, J. Entangled states of more than 40 atoms in an optical fiber cavity. Science 344, 180 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Barontini, G., Hohmann, L., Haas, F., Estève, J. & Reichel, J. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics. Science 349, 1317 (2015).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Ultrafast high-fidelity state readout of single neutral atom. Phys. Rev. Lett. 134, 240802 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Huie, W., Menon, S. G., Bernien, H. & Covey, J. P. Multiplexed telecommunication-band quantum networking with atom arrays in optical cavities. Phys. Rev. Res. 3, 043154 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. & Thompson, J. D. High-rate and high-fidelity modular interconnects between neutral atom quantum processors. PRX Quantum 5, 020363 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Covey, J. P., Weinfurter, H. & Bernien, H. Quantum networks with neutral atom processing nodes. npj Quantum Inf. 9, 90 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y.-L. et al. Architecture for a quantum repeater based on Rydberg-atom quantum processors. Phys. Rev. Appl. 24, 024052 (2025).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Sinclair, J. et al. Fault-tolerant optical interconnects for neutral-atom arrays. Phys. Rev. Res. 7, 013313 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hahn, T. A., White, R., Bernien, H. & Arnon, R. Deterministic high-rate entanglement distillation with neutral atom arrays. Preprint at https://arxiv.org/abs/2503.00445 (2025).

  • Makin, M. I., Cole, J. H., Tahan, C., Hollenberg, L. C. L. & Greentree, A. D. Quantum phase transitions in photonic cavities with two-level systems. Phys. Rev. A 77, 053819 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Hartmann, M., Brandão, F. & Plenio, M. Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527 (2008).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nat. Phys. 2, 856 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Grinkemeyer, B. et al. Error-detected quantum operations with neutral atoms mediated by an optical cavity. Science 387, 1301 (2025).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hu, B. et al. Site-selective cavity readout and classical error correction of a 5-bit atomic register. Phys. Rev. Lett. 134, 120801 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hartung, L., Seubert, M., Welte, S., Distante, E. & Rempe, G. A quantum-network register assembled with optical tweezers in an optical cavity. Science 385, 179 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Liu, Y. et al. Realization of strong coupling between deterministic single-atom arrays and a high-finesse miniature optical cavity. Phys. Rev. Lett. 130, 173601 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ɖorđević, T. et al. Entanglement transport and a nanophotonic interface for atoms in optical tweezers. Science 373, 1511 (2021).

    Article 
    MathSciNet 
    PubMed 
    ADS 

    Google Scholar
     

  • Menon, S. G., Glachman, N., Pompili, M., Dibos, A. & Bernien, H. An integrated atom array–nanophotonic chip platform with background-free imaging. Nat. Commun. 15, 6156 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Shadmany, D. et al. Cavity QED in a high NA resonator. Sci. Adv. 11, eads8171 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahler, S., Tradonsky, C., Chriki, R., Friesem, A. A. & Davidson, N. Coupling of laser arrays with intracavity elements in the far-field. OSA Contin.2, 2077 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. Parallelized telecom quantum networking with an ytterbium-171 atom array. Nat. Phys. 21, 1826 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Manetsch, H. J. et al. A tweezer array with 6,100 highly coherent atomic qubits. Nature 647, 60 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Beverland, M. E. et al. Assessing requirements to scale to practical quantum advantage. Preprint at https://arxiv.org/abs/2211.07629 (2022).

  • Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Rached, S. B. et al. Benchmarking emerging cavity-mediated quantum interconnect technologies for modular quantum computers. In 2024 IEEE International Conference on Quantum Computing and Engineering (QCE), 1908–1913 (IEEE, 2024).

  • Sauerwein, N. et al. Engineering random spin models with atoms in a high-finesse cavity. Nat. Phys. 19, 1128 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • J. Young, D. et al. Observing dynamical phases of BCS superconductors in a cavity QED simulator. Nature 625, 679 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Vaidya, V. D. et al. Tunable-range, photon-mediated atomic interactions in multimode cavity QED. Phys. Rev. X 8, 011002 (2018).

    CAS 

    Google Scholar
     

  • Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87 (2017).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ocola, P. L. et al. Control and entanglement of individual Rydberg atoms near a nanoscale device. Phys. Rev. Lett. 132, 113601 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021 (2016).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Sommer, A. & Simon, J. Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators. New J. Phys. 18, 035008 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Cai, S. et al. Microlenses arrays: fabrication, materials, and applications. Microsc. Res. Tech. 84, 2784 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tanji-Suzuki, H. et al. Interaction between atomic ensembles and optical resonators: classical description. Adv. At. Mol. Opt. Phys. 60, 201 (2011).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Grimm, R., Weidemüller, M. & Ovchinnikov, Y. B. Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95 (2000).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Bergschneider, A. et al. Spin-resolved single-atom imaging of 6Li in free space. Phys. Rev. A 97, 063613 (2018).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Deist, E., Gerber, J. A., Lu, Y.-H., Zeiher, J. & Stamper-Kurn, D. M. Superresolution microscopy of optical fields using tweezer-trapped single atoms. Phys. Rev. Lett. 128, 083201 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Shaw, A. L. et al. Multi-ensemble metrology by programming local rotations with atom movements. Nat. Phys. 20, 195 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Peters, M. L. et al. Cavity-enabled real-time observation of individual atomic collisions. Phys. Rev. Lett. 135, 093402 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yin, C. et al. A cavity loadlock apparatus for next-generation quantum optics experiments. Rev. Sci. Instrum. 94, 083202 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Chadi, A., Méjean, G., Grilli, R. & Romanini, D. Simple and compact piezoelectric mirror actuator with 100 kHz bandwidth, using standard components. Rev. Sci. Instrum. 84, 056112 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Steck, D. A. Rubidium 87 D Line Data(revision 2.3.3) (2024); http://steck.us/alkalidata.

  • Chew, Y. T. et al. Ultraprecise holographic optical tweezer array. Phys. Rev. A 110, 053518 (2024).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Su, L. et al. Fast single atom imaging for optical lattice arrays. Nat. Commun. 16, 1017 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Palm, L. sloppy. GitHub https://github.com/lksplm/sloppy/ (2025).

  • Jaffe, M., Palm, L., Baum, C., Taneja, L. & Simon, J. Aberrated optical cavities. Phys. Rev. A 104, 013524 (2021).

    Article 
    MathSciNet 
    CAS 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments