Picozzi, S. Engineering ferromagnetism. Nat. Mater. 3, 349–350 (2004).
Ohno, H. A window on the future of spintronics. Nat. Mater. 9, 952–954 (2010).
Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).
Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).
Csontos, M. et al. Pressure-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor. Nat. Mater. 4, 447–449 (2005).
Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).
Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).
Yi, D. et al. Emergent electric field control of phase transformation in oxide superlattices. Nat. Commun. 11, 902 (2020).
Liu, S. et al. Two-dimensional ferromagnetic superlattices. Natl Sci. Rev. 7, 745–754 (2020).
Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2021).
Wan, Z., Qian, Q., Huang, Y. & Duan, X. Layered hybrid superlattices as designable quantum solids. Nature 635, 49–60 (2024).
Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017).
Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).
Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).
Whittingham, M. S. & Gamble, F. R. The lithium intercalates of the transition metal dichalcogenides. Mater. Res. Bull. 10, 363–371 (1975).
Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).
Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).
Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).
Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).
Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).
Ren, H. et al. Precision control of amphoteric doping in CuxBi2Se3 nanoplates. Precis. Chem. 2, 421–427 (2024).
Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).
Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).
He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).
Wang, G. et al. Revisiting the structural evolution of MoS2 during alkali metal (Li, Na, and K) intercalation. ACS Appl. Energy Mater. 4, 14180–14190 (2021).
Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).
Guo, Y. et al. Probing the dynamics of the metallic-to-semiconducting structural phase transformation in MoS2 crystals. Nano Lett. 15, 5081–5088 (2015).
Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011).
Zou, J., Li, F., Bissett, M. A., Kim, F. & Hardwick, L. J. Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes. Electrochim. Acta 331, 135284 (2020).
Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).
Zhu, L. et al. Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. J. Catal. 258, 235–242 (2008).
Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).
Flory, M. A., McLamarrah, S. K. & Ziurys, L. M. High-resolution spectroscopy of CoS (X4Δi): examining 3d transition-metal sulfide bonds. J. Chem. Phys. 123, 164312 (2005).
Yu, Z. X. et al. The structure of the CoS2 (100)-(1×1) surface. J. Condens. Matter Phys. 19, 156223 (2007).
Luo, Y. et al. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018).
Schlapp, R. & Penney, W. G. Influence of crystalline fields on the susceptibilities of salts of paramagnetic ions. II. The iron group, especially Ni, Cr and Co. Phys. Rev. 42, 666–686 (1932).
Greaney, M., Huan, G., Ramanujachary, K. V., Teweldemedhin, Z. & Greenblatt, M. Antiferro-to-ferromagnetic transition in metallic TlCo2SxSe2−x (0 ≤ x ≤ 2.0) with the ThCr2Si2 type structure. Solid State Commun. 79, 803–810 (1991).
Griffith, J. S. & Orgel, L. E. Ligand-field theory. Q. Rev. Chem. Soc. 11, 381–393 (1957).
Deng, W. et al. Constructing matched sub-nanometric cobalt clusters with multiple oxidation and metallic states for efficient propane dehydrogenation. Commun. Mater. 5, 215 (2024).
Ko, K. T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe1/4TaS2. Phys. Rev. Lett. 107, 247201 (2011).
Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).
Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).
Priour, D. J. & Das Sarma, S. Phase diagram of the disordered RKKY model in dilute magnetic semiconductors. Phys. Rev. Lett. 97, 127201 (2006).
Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020).
Mugiraneza, S. & Hallas, A. M. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Commun. Phys. 5, 95 (2022).
Xie, L. S., Husremović, S., Gonzalez, O., Craig, I. M. & Bediako, D. K. Structure and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022).
Pfleiderer, C. et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2. Nature 412, 58–61 (2001).
Shermadini, Z. et al. Coexistence of magnetism and superconductivity in the iron-based compound Cs0.8(FeSe0.98)2. Phys. Rev. Lett. 106, 117602 (2011).
Rahmanian, E. et al. 1T-phase tungsten chalcogenides (WS2, WSe2, WTe2) decorated with TiO2 nanoplatelets with enhanced electron transfer activity for biosensing applications. ACS Appl. Nano Mater. 1, 7006–7015 (2018).
Zhou, J., Zhou. J. & Duan, X. Replication data for: A cation-exchange approach to tunable magnetic intercalation superlattices. figshare https://doi.org/10.6084/m9.figshare.28908146 (2025).