Sunday, March 30, 2025
No menu items!
HomeNatureA broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome

A broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome

  • Maksimov, M. O., Pan, S. J. & James Link, A. Lasso peptides: structure, function, biosynthesis, and engineering. Nat. Prod. Rep. 29, 996–1006 (2012).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Barrett, S. E. & Mitchell, D. A. Advances in lasso peptide discovery, biosynthesis, and function. Trends Genet. 40, 950–968 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gavrish, E. et al. Lassomycin, a ribosomally synthesized cyclic peptide, kills Mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. Chem. Biol. 21, 509–518 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mukhopadhyay, J., Sineva, E., Knight, J., Levy, R. M. & Ebright, R. H. Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol. Cell. 14, 739–751 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilson, D. N. The A–Z of bacterial translation inhibitors. Crit. Rev. Biochem. Mol. Biol. 44, 393–433 (2009).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lin, J., Zhou, D., Steitz, T. A., Polikanov, Y. S. & Gagnon, M. G. Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu. Rev. Biochem. 87, 451–478 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antimicrobial Resistance, C. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).


    Google Scholar
     

  • Jesudason, T. WHO publishes updated list of bacterial priority pathogens. Lancet Microbe 5, 100940 (2024).

    PubMed 
    MATH 

    Google Scholar
     

  • Liu, Y., Ding, S. Y., Shen, J. Z. & Zhu, K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat. Prod. Rep. 36, 573–592 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Sieber, S. A. & Marahiel, M. A. Molecular mechanisms underlying nonribosomal peptide synthesis: Approaches to new antibiotics. Chem. Rev. 105, 715–738 (2005).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ongpipattanakul, C. et al. Mechanism of action of ribosomally synthesized and post-translationally modified peptides. Chem. Rev. 122, 14722–14814 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfeiffer, I. P., Schroder, M. P. & Mordhorst, S. Opportunities and challenges of RiPP-based therapeutics. Nat. Prod. Rep. 41, 990–1019 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kuznedelov, K. et al. The antibacterial threaded-lasso peptide capistruin inhibits bacterial RNA polymerase. J. Mol. Biol. 412, 842–848 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577–585 (1995).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Smith, L. K. & Mankin, A. S. Transcriptional and translational control of the mlr operon, which confers resistance to seven classes of protein synthesis inhibitors. Antimicrob. Agents Chemother. 52, 1703–1712 (2008).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Garneau-Tsodikova, S. & Labby, K. J. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm 7, 11–27 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Cook, M. A. et al. Lessons from assembling a microbial natural product and pre-fractionated extract library in an academic laboratory. J. Ind. Microbiol. Biotechnol. 50, kuad042 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nation, R. L. & Li, J. Colistin in the 21st century. Curr. Opin. Infect. Dis. 22, 535–543 (2009).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hancock, R. E. & Rozek, A. Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol. Lett. 206, 143–149 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Quan, S., Skovgaard, O., McLaughlin, R. E., Buurman, E. T. & Squires, C. L. Markerless Escherichia coli rrn deletion strains for genetic determination of ribosomal binding sites. G3 5, 2555–2557 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orelle, C. et al. Tools for characterizing bacterial protein synthesis inhibitors. Antimicrob. Agents Chemother. 57, 5994–6004 (2013).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Polikanov, Y. S., Aleksashin, N. A., Beckert, B. & Wilson, D. N. The mechanisms of action of ribosome-targeting peptide antibiotics. Front. Mol. Biosci. 5, 48 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pantel, L. et al. Odilorhabdins, antibacterial agents that cause miscoding by binding at a new ribosomal site. Mol. Cell 70, 83–94.e87 (2018).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Peske, F., Savelsbergh, A., Katunin, V. I., Rodnina, M. V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA–mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Noller, H. F., Lancaster, L., Zhou, J. & Mohan, S. The ribosome moves: RNA mechanics and translocation. Nat. Struct. Mol. Biol. 24, 1021–1027 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rundlet, E. J. et al. Structural basis of early translocation events on the ribosome. Nature 595, 741–745 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Orelle, C. et al. Identifying the targets of aminoacyl-tRNA synthetase inhibitors by primer extension inhibition. Nucleic Acids Res. 41, e144 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Olivier, N. B. et al. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome. Proc. Natl Acad. Sci. USA 111, 16274–16279 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brenner, S. & Beckwith, J. Ochre mutants, a new class of suppressible nonsense mutants. J. Mol. Biol. 13, 629–637 (1965).

    MATH 

    Google Scholar
     

  • Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G. & Collins, J. J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, L., Do, T. & Link, A. J. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J. Ind. Microbiol. Biotechnol. 48, kuab005 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carson, D. V., Juarez, R. J., Do, T., Yang, Z. J. & Link, A. J. Antimicrobial lasso peptide cloacaenodin utilizes a unique TonB-dependent transporter to access susceptible bacteria. ACS Chem. Biol. 19, 981–991 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Do, T., Thokkadam, A., Leach, R. & Link, A. J. Phenotype-guided comparative genomics identifies the complete transport pathway of the antimicrobial lasso peptide ubonodin in burkholderia. ACS Chem. Biol. 17, 2332–2343 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, S., Goy, K., She, R., Spellberg, B. & Luna, B. Antimicrobial susceptibility testing performed in RPMI 1640 reveals azithromycin efficacy against carbapenem-resistant Acinetobacter baumannii and predicts in vivo outcomes in Galleria mellonella. Antimicrob. Agents Chemother. 67, e01320–e01322 (2023).

    PubMed 

    Google Scholar
     

  • Luna, B. et al. A nutrient-limited screen unmasks rifabutin hyperactivity for extensively drug-resistant Acinetobacter baumannii. Nat. Microbiol. 5, 1134–1143 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Farha, M. A., French, S., Stokes, J. M. & Brown, E. D. Bicarbonate alters bacterial susceptibility to antibiotics by targeting the proton motive force. ACS Infect. Dis. 4, 382–390 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, F. D. et al. Triculamin: an unusual lasso peptide with potent antimycobacterial activity. J. Nat. Prod. 85, 1514–1521 (2022).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ersoy, S. C. et al. Correcting a fundamental flaw in the paradigm for antimicrobial susceptibility testing. EBioMedicine 20, 173–181 (2017).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Polikanov, Y. S. et al. Negamycin interferes with decoding and translocation by simultaneous interaction with rRNA and tRNA. Mol. Cell 56, 541–550 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Z., Erickson, D. L. & Meng, J. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing. BMC Genomics 21, 631 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–w35 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–w50 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gilchrist, C. L. M. & Chooi, Y.-H. clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, C. et al. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products in Streptomyces. Proc. Natl Acad. Sci. USA 112, 12181–12186 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hong, H. J., Hutchings, M. I., Hill, L. M. & Buttner, M. J. The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J. Biol. Chem. 280, 13055–13061 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Xu, M. et al. GPAHex-A synthetic biology platform for type IV–V glycopeptide antibiotic production and discovery. Nat. Commun. 11, 5232 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cox, G. et al. A common platform for antibiotic dereplication and adjuvant discovery. Cell Chem. Biol. 24, 98–109 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Deatherage, D. E. & Barrick, J. E. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151, 165–188 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Speers, A. E. & Cravatt, B. F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Shimizu, Y. et al. Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755 (2001).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Polikanov, Y. S., Blaha, G. M. & Steitz, T. A. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336, 915–918 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polikanov, Y. S., Steitz, T. A. & Innis, C. A. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21, 787–793 (2014).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Polikanov, Y. S., Melnikov, S. V., Soll, D. & Steitz, T. A. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 22, 342–344 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Syroegin, E. A., Aleksandrova, E. V. & Polikanov, Y. S. Insights into the ribosome function from the structures of non-arrested ribosome–nascent chain complexes. Nat. Chem. 15, 143–153 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Aleksandrova, E. V. et al. Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it. Nat. Chem. Biol. 20, 867–876 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Svetlov, M. S. et al. Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Nat. Chem. Biol. 17, 412–420 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, C. W. et al. Structural insights into the mechanism of overcoming Erm-mediated resistance by macrolides acting together with hygromycin-A. Nat. Commun. 14, 4196 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mitcheltree, M. J. et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 599, 507–512 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Noeske, J. et al. High-resolution structure of the Escherichia coli ribosome. Nat. Struct. Mol. Biol. 22, 336–341 (2015).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments