Friday, February 20, 2026
No menu items!
HomeNatureHighly dynamic dural sinuses support meningeal immunity

Highly dynamic dural sinuses support meningeal immunity

  • Coles, J. A., Myburgh, E., Brewer, J. M. & McMenamin, P. G. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog. Neurobiol. 156, 107–148 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Buckley, M. W. & McGavern, D. B. Immune dynamics in the CNS and its barriers during homeostasis and disease. Immunol. Rev. 306, 58–75 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alves de Lima, K., Rustenhoven, J. & Kipnis, J. Meningeal immunity and its function in maintenance of the central nervous system in health and disease. Annu. Rev. Immunol. 38, 597–620 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zong, C., Yu, X., Liu, J. & Liu, Y. Dural venous sinuses: what we need to know. Curr. Med. Imaging 16, 1259–1270 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Shapiro, M. et al. Venous anatomy of the central nervous system. Neurosurg. Clin. N. Am. 35, 273–286 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Fitzpatrick, Z. et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 587, 472–476 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rustenhoven, J. et al. Functional characterization of the dural sinuses as a neuroimmune interface. Cell 184, 1000–1016.e1027 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zanluqui, N. G. & McGavern, D. B. Why do central nervous system barriers host a diverse immune landscape? Trends Immunol. 45, 738–749 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rua, R. & McGavern, D. B. Advances in meningeal immunity. Trends Mol. Med. 24, 542–559 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betsholtz, C. et al. Advances and controversies in meningeal biology. Nat. Neurosci. 27, 2056–2072 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mastorakos, P. & McGavern, D. The anatomy and immunology of vasculature in the central nervous system. Sci. Immunol. 4, eaav0492 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weed, L. H. Studies on cerebro-spinal fluid. no. II: The theories of drainage of cerebro-spinal fluid with an analysis of the methods of investigation. J. Med. Res. 31, 21–49 (1914).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Toriumi, H. et al. Developmental and circulatory profile of the diploic veins. Microvasc. Res. 81, 97–102 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Castellani, G., Peralta Ramos, J. M. & Schwartz, M. Bridging anatomical gaps between brain and immune system. Trends Immunol. 45, 318–319 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yagmurlu, K. et al. A subset of arachnoid granulations in humans drain to the venous circulation via intradural lymphatic vascular channels. J. Neurosurg. 136, 917–926 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shah, T. et al. Arachnoid granulations are lymphatic conduits that communicate with bone marrow and dura-arachnoid stroma. J. Exp. Med. 220, e20220618 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smyth, L. C. D. et al. Identification of direct connections between the dura and the brain. Nature 627, 165–173 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brioschi, S. et al. Heterogeneity of meningeal B cells reveals a lymphopoietic niche at the CNS borders. Science 373, eabf9277 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. C. et al. Immaturity of immune cells around the dural venous sinuses contributes to viral meningoencephalitis in neonates. Sci. Immunol. 8, eadg6155 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amann, L. et al. Extrasinusoidal macrophages are a distinct subset of immunologically active dural macrophages. Sci. Immunol. 9, eadh1129 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzpatrick, Z. et al. Venous-plexus-associated lymphoid hubs support meningeal humoral immunity. Nature 628, 612–619 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacob, L. et al. Conserved meningeal lymphatic drainage circuits in mice and humans. J. Exp. Med. 219, e20220035 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herisson, F. et al. Direct vascular channels connect skull bone marrow and the brain surface enabling myeloid cell migration. Nat. Neurosci. 21, 1209–1217 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazzitelli, J. A. et al. Skull bone marrow channels as immune gateways to the central nervous system. Nat. Neurosci. 26, 2052–2062 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia-Gonzalez, U. et al. The diploic venous system: surgical anatomy and neurosurgical implications. Neurosurg. Focus 27, E2 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Skrzat, J. & Zarzecki, M. Cranial diploic channels and their veins—a review of literature. Folia Med. Cracov. 62, 77–90 (2022).

    PubMed 

    Google Scholar
     

  • Ringstad, G. & Eide, P. K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun. 11, 354 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epstein, F. H., Mugler, J. P., Cail, W. S. III & Brookeman, J. R. CSF-suppressed T2-weighted three-dimensional MP-RAGE MR imaging. J. Magn. Reson. Imaging 5, 463–469 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alarcon-Martinez, L. et al. Capillary pericytes express alpha-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. eLife 7, e34861 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinho-Ribeiro, F. A. et al. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 615, 472–481 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andres, K. H., von During, M., Muszynski, K. & Schmidt, R. F. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat. Embryol. 175, 289–301 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z., Dickerson, I. M. & Russo, A. F. Calcitonin gene-related peptide receptor activation by receptor activity-modifying protein-1 gene transfer to vascular smooth muscle cells. Endocrinology 147, 1932–1940 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scheid, C. R., Honeyman, T. W. & Fay, F. S. Mechanism of β-adrenergic relaxation of smooth muscle. Nature 277, 32–36 (1979).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanoue, A. et al. The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J. Clin. Invest. 109, 765–775 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, Q. et al. Enhancing glymphatic fluid transport by pan-adrenergic inhibition suppresses epileptogenesis in male mice. Nat. Commun. 15, 9600 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, M. et al. The endothelial adrenomedullin-RAMP2 system regulates vascular integrity and suppresses tumour metastasis. Cardiovasc. Res. 111, 398–409 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mackay, D. J. & Hall, A. Rho GTPases. J. Biol. Chem. 273, 20685–20688 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fischer, J. P., Els-Heindl, S. & Beck-Sickinger, A. G. Adrenomedullin—current perspective on a peptide hormone with significant therapeutic potential. Peptides 131, 170347 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitamura, K. et al. Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem. Biophys. Res. Commun. 192, 553–560 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Santiago, J. A. et al. Comparison of responses to adrenomedullin and adrenomedullin analogs in the mesenteric vascular bed of the cat. Eur. J. Pharmacol. 272, 115–118 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R. M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh, D. R., Lynch, J. J., DT, O. C., Newport, D. T. & Mulvihill, J. J. E. Mechanical and structural characterisation of the dural venous sinuses. Sci. Rep. 10, 21763 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oelschlegel, A. M. et al. Beyond the microcirculation: sequestration of infected red blood cells and reduced flow in large draining veins in experimental cerebral malaria. Nat. Commun. 15, 2396 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higgins, J. N., Owler, B. K., Cousins, C. & Pickard, J. D. Venous sinus stenting for refractory benign intracranial hypertension. Lancet 359, 228–230 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Portnoy, H. D., Branch, C. & Castro, M. E. The relationship of intracranial venous pressure to hydrocephalus. Childs Nerv. Syst. 10, 29–35 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnston, I., Kollar, C., Dunkley, S., Assaad, N. & Parker, G. Cranial venous outflow obstruction in the pseudotumour syndrome: incidence, nature and relevance. J. Clin. Neurosci. 9, 273–278 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballabio, E., Valvassori, L., De Simone, R., Bianchi Marzoli, S. & Frediani, F. Idiopathic intracranial hypertension secondary to superior sagittal sinus stenosis: a case report. Neurol. Sci. 45, 5083–5086 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Schoofs, H. et al. Dynamic cytoskeletal regulation of cell shape supports resilience of lymphatic endothelium. Nature 641, 465–475 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. V., Kang, S. S., Dustin, M. L. & McGavern, D. B. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457, 191–195 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gossa, S., Nayak, D., Zinselmeyer, B. H. & McGavern, D. B. Development of an immunologically tolerated combination of fluorescent proteins for in vivo two-photon imaging. Sci. Rep. 4, 6664 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faust, N., Varas, F., Kelly, L. M., Heck, S. & Graf, T. Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood 96, 719–726 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. & Zhou, B. Generation of Plvap-CreER and Car4-CreER for genetic targeting of distinct lung capillary populations. J. Genet. Genomics 49, 1093–1100 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, M. et al. Rapid image deconvolution and multiview fusion for optical microscopy. Nat. Biotechnol. 38, 1337–1346 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenblum, J. S. et al. Developmental vascular malformations in EPAS1 gain-of-function syndrome. JCI Insight 6, e144368 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenblum, J. S. et al. Non-invasive in situ visualization of the murine cranial vasculature. Cell Rep. Methods 2, 100151 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russo, M. V., Latour, L. L. & McGavern, D. B. Distinct myeloid cell subsets promote meningeal remodeling and vascular repair after mild traumatic brain injury. Nat. Immunol. 19, 442–452 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinfeld, D., Mitra, P. P., Helmchen, F. & Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proc. Natl Acad. Sci. USA 95, 15741–15746 (1998).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments