Thursday, February 19, 2026
No menu items!
HomeNatureGiant energy storage and dielectric performance in all-polymer nanocomposites

Giant energy storage and dielectric performance in all-polymer nanocomposites

  • Chu, B. et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, J. et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 615, 62–66 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, H. et al. Dielectric polymers for high-temperature capacitive energy storage. Chem. Soc. Rev. 50, 6369–6400 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rui, G., Bernholc, J., Zhang, S. & Zhang, Q. M. Dilute nanocomposites: tuning polymer chain local nanostructures to enhance dielectric responses. Adv. Mater. 36, 2311739 (2024).

    Article 

    Google Scholar
     

  • Wu, X., Chen, X., Zhang, Q. M. & Tan, D. Q. Advanced dielectric polymers for energy storage. Energy Storag. Mater. 44, 29–47 (2022).

    Article 

    Google Scholar
     

  • Yang, M. et al. Polymer nanocomposite dielectrics for capacitive energy storage. Nat. Nanotechnol. 19, 588–603 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, M. et al. Roll-to-roll fabricated polymer composites filled with subnanosheets exhibiting high energy density and cyclic stability at 200 °C. Nat. Energy 9, 143–153 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wu, C. et al. Flexible temperature-invariant polymer dielectrics with large bandgap. Adv. Mater. 32, 2000499 (2020).

    Article 

    Google Scholar
     

  • Li, H. et al. Machine learning-accelerated discovery of heat-resistant polysulfates for electrostatic energy storage. Nat. Energy 10, 90–100 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Wang, R. et al. Dielectric polymers with mechanical bonds for high-temperature capacitive energy storage. Nat. Mater. 24, 1017–1081 (2025).

    Article 

    Google Scholar
     

  • Yuan, C. et al. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Q., Xie, Q., Wang, T., Huang, S. & Zhang, Q. M. Scalable all polymer dielectrics with self-assembled nanoscale multiboundary exhibiting superior high temperature capacitive performance. Nat. Commun. 15, 9351 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. et al. Surface ions-activated polymer composites dielectrics for superior high-temperature capacitive energy storage. Energy Environ. Sci. 17, 1592–1602 (2024).

    Article 

    Google Scholar
     

  • Flory, P. J. Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942).

    Article 
    ADS 

    Google Scholar
     

  • Huggins, M. L. Solutions of long chain compounds. J. Chem. Phys. 9, 440–440 (1941).

    Article 
    ADS 

    Google Scholar
     

  • Bates, F. S. Polymer–polymer phase behavior. Science 251, 898–905 (1991).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, M., Zhou, L., Li, X., Ren, W. & Shen, Y. Polyimides physically crosslinked by aromatic molecules exhibit ultrahigh energy density at 200 °C. Adv. Mater. 35, 2302392 (2023).

    Article 

    Google Scholar
     

  • Chen, J. et al. Linear dielectric polymers with ferroelectric-like crystals for high-temperature capacitive energy storage. Adv. Mater. 37, 2417072 (2025).

    Article 

    Google Scholar
     

  • Yang, M. et al. Quantum size effect to induce colossal high-temperature energy storage density and efficiency in polymer/inorganic cluster composites. Adv. Mater. 35, 2301936 (2023).

    Article 

    Google Scholar
     

  • Yang, M., Ren, W., Jin, Z., Xu, E. & Shen, Y. Enhanced high-temperature energy storage performances in polymer dielectrics by synergistically optimizing band-gap and polarization of dipolar glass. Nat. Commun. 15, 8647 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, R. et al. Designing tailored combinations of structural units in polymer dielectrics for high-temperature capacitive energy storage. Nat. Commun. 14, 2406 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, W. et al. Self-healing polymer dielectric exhibiting ultrahigh capacitive energy storage performance at 250 °C. Energy Environ. Sci. 17, 8866–8873 (2024).

    Article 

    Google Scholar
     

  • Hao, J. et al. Stereoisomerism of vicinal polydichloronorbornene for ultra-high-temperature capacitive energy storage. Adv. Mater. 37, 2417625 (2025).

    Article 

    Google Scholar
     

  • Christodoulides, C. Determination of activation energies by using the widths of peaks of thermoluminescence and thermally stimulated depolarisation currents. J. Phys. D 18, 1501 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, T. et al. A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature. Sci. Adv. 6, eaax6622 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, T. G. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull. Am. Phys. Soc. 1, 123 (1952).


    Google Scholar
     

  • Kim, G.-H. et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14, 295–300 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rong, W., Fan, Z., Yu, Y., Bu, H. & Wang, M. Influence of entanglements on glass transition of atactic polystyrene. J. Polym. Sci. B Polym. Phys. 43, 2243–2251 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Frisch, M. et al. Gaussian 09, Revision D. 01 (Gaussian, Inc., 2009).

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theoret. Chim. Acta 44, 129–138 (1977).

    Article 

    Google Scholar
     

  • Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    ADS 

    Google Scholar
     

  • van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF:  a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments