Thursday, February 12, 2026
No menu items!
HomeNatureFossil isotope evidence for trophic simplification on modern Caribbean reefs

Fossil isotope evidence for trophic simplification on modern Caribbean reefs

  • Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B 276, 3019–3025 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cramer, K. L. et al. Widespread loss of Caribbean Acroporid corals was underway before coral bleaching and disease outbreaks. Sci. Adv. 6, eaax9395 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dillon, E. M. et al. Fossil dermal denticles reveal the preexploitation baseline of a Caribbean coral reef shark community. Proc. Natl Acad. Sci. USA 118, e2017735118 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lueders-Dumont, J. A., Wang, X. T., Jensen, O. P., Sigman, D. M. & Ward, B. B. Nitrogen isotopic analysis of carbonate-bound organic matter in modern and fossil fish otoliths. Geochim. Cosmochim. Acta 224, 200–222 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kast, E. R. et al. Cenozoic megatooth sharks occupied extremely high trophic positions. Sci. Adv. 8, 7–18 (2022).

    Article 

    Google Scholar
     

  • Skinner, C., Cobain, M. R. D., Zhu, Y., Wyatt, A. S. J. & Polunin, N. V. C. Progress and direction in the use of stable isotopes to understand complex coral reef ecosystems: a review. Oceanogr. Mar. Biol. An Annu. Rev. 60, 373–432 (2022).


    Google Scholar
     

  • Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at risk revisited. World Resour. Inst. 74, 1–130 (2011).


    Google Scholar
     

  • Sing Wong, A., Vrontos, S. & Taylor, M. L. An assessment of people living by coral reefs over space and time. Glob. Chang. Biol. 28, 7139–7153 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Aronson, R. B. Foraging behavior of the west Atlantic trumpetfish, Aulostomus maculatus: use of large, herbivorous reef fishes as camouflage. Bull. Mar. Sci. 33, 166–171 (1983).


    Google Scholar
     

  • Lukoschek, V. & McCormick, M. I. A review of multi-species foraging associations in fishes and their ecological significance. Proc. Ninth Int. Coral Reef Symp. I, 467–474 (2000).


    Google Scholar
     

  • Layman, C. A., Quattrochi, J. P., Peyer, C. M. & Allgeier, J. E. Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol. Lett. 10, 937–944 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frédérich, B., Lehanse, O., Vandewalle, P. & Lepoint, G. Trophic niche width, shift, and specialization of Dascyllus aruanus in Toliara Lagoon, Madagascar. Copeia 2010, 218–226 (2010).

    Article 

    Google Scholar
     

  • Layman, C. A. & Allgeier, J. E. Characterizing trophic ecology of generalist consumers: A case study of the invasive lionfish in the Bahamas. Mar. Ecol. Prog. Ser. 448, 131–141 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Odum, H. T. & Odum, E. P. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1995).

    Article 

    Google Scholar
     

  • Polovina, J. J. Model of a coral reef ecosystem: I. The ECOPATH model and its application to French Frigate Shoals. Coral Reefs 3, 1–11 (1984).

    Article 
    ADS 

    Google Scholar
     

  • Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).

    Article 

    Google Scholar
     

  • Letourneur, Y., Briand, M. J. & Graham, N. A. J. Coral reef degradation alters the isotopic niche of reef fishes. Mar. Biol. 164, 224 (2017).

    Article 

    Google Scholar
     

  • Wang, X. T. et al. Isotopic composition of carbonate-bound organic nitrogen in deep-sea scleractinian corals: a new window into past biogeochemical change. Earth Planet. Sci. Lett. 400, 243–250 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lueders-Dumont, J. A. et al. Comparison of the isotopic composition of fish otolith-bound organic N with host tissue. Can. J. Fish. Aquat. Sci. 77, 264–275 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rao, Z. C. et al. A nitrogen isotopic shift in fish otolith–bound organic matter during the Late Cretaceous. Proc. Natl Acad. Sci. 121, e2322863121 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin, C.-H. et al. Reconstructing reef fish communities using fish otoliths in coral reef sediments. PLoS ONE 14, e0218413 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Leonhard, I. & Agiadi, K. Addressing challenges in marine conservation with fish otoliths and their death assemblages. Geol. Soc. London 529, 243–262 (2023).

  • Salas, S., Chuenpagdee, R., Charles, A. T. & Seijo, J. C. Coastal Fisheries of Latin America and the Caribbean (Food and Agriculture Organization of the United Nations, 2011).

  • Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: a novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).

    Article 

    Google Scholar
     

  • Post, D. M. The long and short of food-chain length. Trends Ecol. Evol. 17, 269–277 (2002).

    Article 

    Google Scholar
     

  • Ward, C. L. & McCann, K. S. A mechanistic theory for aquatic food chain length. Nat. Commun. 8, 2028 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Depczynski, M. & Bellwood, D. R. The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar. Ecol. Prog. Ser. 256, 183–191 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Brandl, S. J., Goatley, C. H. R., Bellwood, D. R. & Tornabene, L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 93, 1846–1873 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, Y., Newman, S. P., Reid, W. D. K. & Polunin, N. V. C. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160 (2019).

  • Tilley, A., López-Angarita, J. & Turner, J. R. Diet reconstruction and resource partitioning of a Caribbean marine mesopredator using stable isotope Bayesian modelling. PLoS ONE 8, e79560 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hempson, T. N. et al. Coral reef mesopredators switch prey, shortening food chains, in response to habitat degradation. Ecol. Evol. 7, 2626–2635 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuthmann, L. E. & Castellanos-Galindo, G. A. Trophic position and isotopic niche of mangrove fish assemblages at both sides of the Isthmus of Panama. Bull. Mar. Sci. 96, 449–467 (2020).

    Article 

    Google Scholar
     

  • Vaslet, A., Phillips, D. L., France, C. A. M., Feller, I. C. & Baldwin, C. C. Trophic behaviour of juvenile reef fishes inhabiting interlinked mangrove-seagrass habitats in offshore mangrove islets. J. Fish Biol. 87, 256–273 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cocheret de la Morinière, E. et al. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. 246, 279–289 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Frédérich, B. et al. Comparative feeding ecology of cardinalfishes (Apogonidae) at Toliara reef, Madagascar. Zool. Stud. 56, e10 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rader, J. A. et al. Isotopic niches support the resource breadth hypothesis. J. Anim. Ecol. 86, 405–413 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).

    Article 

    Google Scholar
     

  • Clever, F. et al. The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs. Commun. Biol. 5, 770 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stewart, S. D., Kelly, D., Biessy, L., Laroche, O. & Wood, S. A. Individual diet specialization drives population trophic niche responses to environmental change in a predator fish population. Food Webs 27, e00193 (2021).

    Article 

    Google Scholar
     

  • Steube, T. R., Altenritter, M. E. & Walther, B. D. Distributive stress: individually variable responses to hypoxia expand trophic niches in fish. Ecology 102, e03356 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hixon, M. A. & Beets, J. P. Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol. Monogr. 63, 77–101 (1993).

    Article 

    Google Scholar
     

  • Beukers, J. S. & Jones, G. P. Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114, 50–59 (1998).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tunney, T. D., McCann, K. S., Lester, N. P. & Shuter, B. J. Food web expansion and contraction in response to changing environmental conditions. Nat. Commun. 3, 1105 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Young, H. S., McCauley, F. O., Micheli, F., Dunbar, R. B. & McCauley, D. J. Shortened food chain length in a fished versus unfished coral reef. Ecol. Appl. 34, e3002 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briones-Fourzán, P. et al. Coral reef degradation differentially alters feeding ecology of co-occurring congeneric spiny lobsters. Front. Mar. Sci. 5, 516 (2019).

    Article 

    Google Scholar
     

  • Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Schiettekatte, N. M. D., Brandl, S. J. & Casey, J. M. fishualize: Color Palettes Based on Fish Species (GitHub, 2019); https://nschiett.github.io/fishualize/index.html.

  • Randall, J. Food Habits of Fishes of the West Indies (NOAA, 1967).

  • O’Dea, A. et al. Defining variation in pre-human ecosystems can guide conservation: an example from a Caribbean coral reef. Sci. Rep. 10, 2922 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mann, P., Taylor, F. W., Burke, K. & Kulstad, R. Subaerially exposed Holocene coral reef, Enriquillo Valley, Dominican Republic. Bull. Geol. Soc. Am. 95, 1084–1092 (1984).

    Article 

    Google Scholar
     

  • Greer, L. & Swart, P. K. Decadal cyclicity of regional mid-Holocene precipitation: evidence from Dominican coral proxies. Paleoceanography 21, PA2020 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Cuevas, D. N., Sherman, C. E., Ramírez, W. & Hubbard, D. K. Coral growth rates from the Holocene Cañada Honda fossil reef, southwestern Dominican Republic: comparisons with modern counterparts in high sedimentation settings. Caribb. J. Sci. 45, 94–109 (2009).

    Article 

    Google Scholar
     

  • Fredston-Hermann, A. L., O’Dea, A., Rodriguez, F., Thompson, W. G. & Todd, J. A. Marked ecological shifts in seagrass and reef molluscan communities since the mid-Holocene in the southwestern Caribbean. Bull. Mar. Sci. 89, 983–1002 (2013).

    Article 

    Google Scholar
     

  • Wang, X. T. et al. Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: a new method and proxy evaluation at Bermuda. Geochim. Cosmochim. Acta 148, 179–190 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X. T. et al. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals. Earth Planet. Sci. Lett. 441, 125–132 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Donnelly, H. A. et al. Groundtruthing nitrogen isotopes as a symbiosis proxy using the facultatively symbiotic coral Oculina arbuscula. Front. Mar. Sci. 11, 1433382 (2024).

    Article 

    Google Scholar
     

  • Luu, V. H. et al. Nitrogen isotope ratios across the Bermuda coral reef: implications for coral nitrogen sources and the coral-bound nitrogen isotope proxy. Front. Mar. Sci. 12, 1554418 (2025).

    Article 

    Google Scholar
     

  • Sims, Z. C., Cohen, A. L., Luu, V. H., Wang, X. T. & Sigman, D. M. Uptake of groundwater nitrogen by a near-shore coral reef community on Bermuda. Coral Reefs 39, 215–228 (2020).

    Article 

    Google Scholar
     

  • Wang, X. T. et al. Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age. Proc. Natl Acad. Sci. USA 114, 3352–3357 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lueders-Dumont, J. A. et al. Controls on the nitrogen isotopic composition of fish otolith organic matter: lessons from a controlled diet switch experiment. Geochim. Cosmochim. Acta 316, 69–86 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718 (1989).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. & Sigman, D. M. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30, 1365–1383 (2016).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Boecklen, W. J., Yarnes, C. T., Cook, B. A. & James, A. C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440 (2011).

    Article 

    Google Scholar
     

  • Casey, J. M. et al. Reconstructing hyperdiverse food webs: gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10, 1157–1170 (2019).

    Article 

    Google Scholar
     

  • Parravicini, V. et al. Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny. PLoS Biol. 18, e3000702 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments