Thursday, February 12, 2026
No menu items!
HomeNatureParity-doublet coherence times in optically trapped polyatomic molecules

Parity-doublet coherence times in optically trapped polyatomic molecules

  • Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wall, M. L., Maeda, K. & Carr, L. D. Simulating quantum magnets with symmetric top molecules. Ann. Phys. 525, 845–865 (2013).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wall, M. L., Maeda, K. & Carr, L. D. Realizing unconventional quantum magnetism with symmetric top molecules. New J. Phys. 17, 025001 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Wall, M. L., Hazzard, K. R. A. & Rey, A. M. in From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities 3–37 (World Scientific, 2015).

  • Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Norrgard, E. et al. Nuclear-spin dependent parity violation in optically trapped polyatomic molecules. Commun. Phys. 2, 77 (2019).

    Article 

    Google Scholar
     

  • Hutzler, N. R. Polyatomic molecules as quantum sensors for fundamental physics. Quantum Sci. Technol. 5, 044011 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kozyryev, I., Lasner, Z. & Doyle, J. M. Enhanced sensitivity to ultralight bosonic dark matter in the spectra of the linear radical SrOH. Phys. Rev. A 103, 043313 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • DeMille, D., Hutzler, N. R., Rey, A. M. & Zelevinsky, T. Quantum sensing and metrology for fundamental physics with molecules. Nat. Phys. 20, 741–749 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hallas, C. et al. Optical trapping of a polyatomic molecule in an -type parity doublet state. Phys. Rev. Lett. 130, 153202 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilas, N. B. et al. Blackbody thermalization and vibrational lifetimes of trapped polyatomic molecules. Phys. Rev. A 107, 062802 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Article 
    CAS 

    Google Scholar
     

  • DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tesch, C. M. & de Vivie-Riedle, R. Quantum computation with vibrationally excited molecules. Phys. Rev. Lett. 89, 157901 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wei, Q., Kais, S., Friedrich, B. & Herschbach, D. Entanglement of polar symmetric top molecules as candidate qubits. J. Chem. Phys. 135, 154102 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Barry, J. F., McCarron, D. J., Norrgard, E. B., Steinecker, M. H. & DeMille, D. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderegg, L. et al. Radio frequency magneto-optical trapping of CaF with high density. Phys. Rev. Lett. 119, 103201 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Truppe, S. et al. Molecules cooled below the Doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Collopy, A. L. et al. 3-D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121, 213201 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, Z., Deng, S., Yang, S. & Yan, B. Three-dimensional magneto-optical trapping of barium monofluoride. Phys. Rev. Lett. 133, 143404 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X.-Y. et al. Ultracold field-linked tetratomic molecules. Nature 626, 283–287 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cairncross, W. B. et al. Assembly of a rovibrational ground state molecule in an optical tweezer. Phys. Rev. Lett. 126, 123402 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ruttley, D. K. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holland, C. M., Lu, Y. & Cheuk, L. W. Bichromatic imaging of single molecules in an optical tweezer array. Phys. Rev. Lett. 131, 053202 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357, 372–375 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Picard, L. R. B. et al. Entanglement and iSWAP gate between molecular qubits. Nature 637, 821–826 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruttley, D. K., Hepworth, T. R., Guttridge, A. & Cornish, S. L. Long-lived entanglement of molecules in magic-wavelength optical tweezers. Nature 637, 827–832 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Albert, V. V., Covey, J. P. & Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).

    CAS 

    Google Scholar
     

  • Gregory, P. D., Blackmore, J. A., Bromley, S. L., Hutson, J. M. & Cornish, S. L. Robust storage qubits in ultracold polar molecules. Nat. Phys. 17, 1149–1153 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Park, A. J. et al. Extended rotational coherence of polar molecules in an elliptically polarized trap. Phys. Rev. Lett. 131, 183401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregory, P. D. et al. Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules. Nat. Phys. 20, 415–421 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeßelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Bause, R. et al. Tune-out and magic wavelengths for ground-state 23Na40K molecules. Phys. Rev. Lett. 125, 023201 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guan, Q., Cornish, S. L. & Kotochigova, S. Magic conditions for multiple rotational states of bialkali molecules in optical lattices. Phys. Rev. A 103, 043311 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, C., Yu, P., Jadbabaie, A. & Hutzler, N. R. Quantum-enhanced metrology for molecular symmetry violation using decoherence-free subspaces. Phys. Rev. Lett. 131, 193602 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, Y., Zhang, C., Jadbabaie, A. & Hutzler, N. R. Engineering field-insensitive molecular clock transitions for symmetry violation searches. Phys. Rev. Lett. 131, 183003 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderegg, L. et al. Quantum control of trapped polyatomic molecules for eEDM searches. Science 382, 665–668 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, Y. et al. Engineered molecular clock transitions for symmetry violation searches. Preprint at https://doi.org/10.48550/arXiv.2508.06787 (2025).

  • Augenbraun, B. L. et al. in Advances in Atomic, Molecular, and Optical Physics (eds DiMauro, L. F. et al.), Vol. 72, Ch 2, 89–182 (Academic Press, 2023).

  • Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570–573 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Magnetic trapping of cold methyl radicals. Phys. Rev. Lett. 118, 093201 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sawaoka, H. et al. Optical trapping of SrOH molecules for dark matter and T-violation searches. Preprint at https://doi.org/10.48550/arXiv.2509.01618 (2025).

  • Vilas, N. B. et al. An optical tweezer array of ultracold polyatomic molecules. Nature 628, 282–286 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Löw, M., Ibrügger, M., Rempe, G. & Zeppenfeld, M. Coherence of symmetry-protected rotational qubits in cold polyatomic molecules. Phys. Rev. Lett. 134, 113402 (2025).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hallas, C. et al. High compression blue-detuned magneto-optical trap of polyatomic molecules. Preprint at https://doi.org/10.48550/arXiv.2404.03636 (2024).

  • Zhang, Z. et al. High optical access cryogenic system for Rydberg atom arrays with a 3000-second trap lifetime. PRX Quantum 6, 020337 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Arrowsmith-Kron, G. et al. Opportunities for fundamental physics research with radioactive molecules. Rep. Prog. Phys. 87, 084301 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kozyryev, I., Baum, L., Matsuda, K. & Doyle, J. M. Proposal for laser cooling of complex polyatomic molecules. ChemPhysChem 17, 3641–3648 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Augenbraun, B. L., Doyle, J. M., Zelevinsky, T. & Kozyryev, I. Molecular asymmetry and optical cycling: laser cooling asymmetric top molecules. Phys. Rev. X 10, 031022 (2020).

    CAS 

    Google Scholar
     

  • Frenett, A., Lasner, Z., Cheng, L. & Doyle, J. M. Vibrational branching fractions for laser cooling of nonlinear strontium-containing molecules. Phys. Rev. A 110, 022811 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vilas, N. B. Laser Cooling, Optical Trapping, and Quantum Control of Polyatomic Molecules. PhD thesis, Harvard Univ. (2025).

  • Vilas, N. B. et al. Quantum-state-controlled collisions of ultracold polyatomic molecules. Preprint at https://doi.org/10.48550/arXiv.2404.03636 (2025).

  • Levine, H. J. Quantum Information Processing and Quantum Simulation with Programmable Rydberg Atom Arrays. PhD thesis, Harvard Univ. (2021).

  • Augenbraun, B. L. Methods for Direct Laser Cooling of Polyatomic Molecules. PhD thesis, Harvard Univ. (2021).

  • Coxon, J. A., Li, M. G. & Presunka, P. I. Laser spectroscopy of the (010)2Σ(+), 2Σ(−)-(000) 2Σ+ parallel bands in the \({\widetilde{A}}^{2}\Pi \)\({\widetilde{X}}^{2}{\Sigma }^{+}\) system of CaOH. J. Mol. Spectrosc. 164, 118–128 (1994).

  • Li, M. High-Resolution Laser Spectroscopy of the \({\widetilde{A}}^{2}\Pi \)\({\widetilde{X}}^{2}{\Sigma }^{+}\) System of Calcium Hydroxyl and Calcium Hydroxyl-d Radicals:Analysis of Renner-Teller, Spin-Orbit, K-type Resonance and Fermi Resonance Interactions. PhD thesis, Dalhousie Univ. (1995).

  • Hougen, J. T. Rotational energy levels of a linear triatomic molecule in a 2Π electronic state. J. Chem. Phys. 36, 519–534 (1962).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, M. & Coxon, J. A. High-resolution analysis of the fundamental bending vibrations in the \({\widetilde{A}}^{2}\Pi \) and \({\widetilde{X}}^{2}{\Sigma }^{+}\) states of CaOH and CaOD: Deperturbation of Renner-Teller, spin-orbit and K-type resonance interactions. J. Chem. Phys. 102, 2663–2674 (1995).

  • Kuhr, S. et al. Analysis of dephasing mechanisms in a standing-wave dipole trap. Phys. Rev. A 72, 023406 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Tuchendler, C., Lance, A. M., Browaeys, A., Sortais, Y. R. P. & Grangier, P. Energy distribution and cooling of a single atom in an optical tweezer. Phys. Rev. A 78, 033425 (2008).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments