Thursday, February 12, 2026
No menu items!
HomeNaturePre-incision structures reveal principles of DNA nucleotide excision repair

Pre-incision structures reveal principles of DNA nucleotide excision repair

  • Marteijn, J. A., Lans, H., Vermeulen, W. & Hoeijmakers, J. H. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell Biol. 15, 465–481 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spivak, G. Nucleotide excision repair in humans. DNA Repair 36, 13–18 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoeijmakers, J. H. Nucleotide excision repair II: from yeast to mammals. Trends Genet. 9, 211–217 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rapin, I. Disorders of nucleotide excision repair. Handb. Clin. Neurol. 113, 1637–1650 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Theil, A. F., Hackes, D. & Lans, H. TFIIH central activity in nucleotide excision repair to prevent disease. DNA Repair 132, 103568 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coverley, D. et al. Requirement for the replication protein SSB in human DNA excision repair. Nature 349, 538–541 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coin, F. et al. Nucleotide excision repair driven by the dissociation of CAK from TFIIH. Mol. Cell 31, 9–20 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. L. et al. Tripartite DNA lesion recognition and verification by XPC, TFIIH, and XPA in nucleotide excision repair. Mol. Cell 59, 1025–1034 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scharer, O. D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol. 5, a012609 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wood, R. D. et al. Nucleotide excision repair of DNA by mammalian cell extracts and purified proteins. Cold Spring Harb. Symp. Quant. Biol. 58, 625–632 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Selby, C. P., Lindsey-Boltz, L. A., Li, W. & Sancar, A. Molecular mechanisms of transcription-coupled repair. Annu. Rev. Biochem. 92, 115–144 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aboussekhra, A. et al. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80, 859–868 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mu, D. et al. Reconstitution of human DNA repair excision nuclease in a highly defined system. J. Biol. Chem. 270, 2415–2418 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Araujo, S. J. et al. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14, 349–359 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kokic, G. et al. Structural basis of TFIIH activation for nucleotide excision repair. Nat. Commun. 10, 2885 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. et al. Lesion recognition by XPC, TFIIH and XPA in DNA excision repair. Nature 617, 170–175 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Min, J. H. & Pavletich, N. P. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449, 570–575 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J. et al. Molecular architecture and functional dynamics of the pre-incision complex in nucleotide excision repair. Nat. Commun. 15, 8511 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Donovan, A., Davies, A. A., Moggs, J. G., West, S. C. & Wood, R. D. XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature 371, 432–435 (1994).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wakasugi, M., Reardon, J. T. & Sancar, A. The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J. Biol. Chem. 272, 16030–16034 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mu, D., Hsu, D. S. & Sancar, A. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271, 8285–8294 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugasawa, K., Akagi, J., Nishi, R., Iwai, S. & Hanaoka, F. Two-step recognition of DNA damage for mammalian nucleotide excision repair: directional binding of the XPC complex and DNA strand scanning. Mol Cell 36, 642–653 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staresincic, L. et al. Coordination of dual incision and repair synthesis in human nucleotide excision repair. EMBO J. 28, 1111–1120 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakasugi, M. & Sancar, A. Order of assembly of human DNA repair excision nuclease. J. Biol. Chem. 274, 18759–18768 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bochkareva, E., Korolev, S., Lees-Miller, S. P. & Bochkarev, A. Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J. 21, 1855–1863 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Volker, M. et al. Sequential assembly of the nucleotide excision repair factors in vivo. Mol. Cell 8, 213–224 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zotter, A. et al. Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced DNA damage depends on functional TFIIH. Mol. Cell. Biol. 26, 8868–8879 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, E. Y. et al. Clinical and molecular epidemiological study of xeroderma pigmentosum in China: a case series of 19 patients. J. Dermatol. 44, 71–75 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L., Elledge, S. J., Peterson, C. A., Bales, E. S. & Legerski, R. J. Specific association between the human DNA repair proteins XPA and ERCC1. Proc. Natl Acad. Sci. USA 91, 5012–5016 (1994).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sabatella, M. et al. Repair protein persistence at DNA lesions characterizes XPF defect with Cockayne syndrome features. Nucleic Acids Res. 46, 9563–9577 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, M. et al. Cryo-EM structures of the XPF–ERCC1 endonuclease reveal how DNA-junction engagement disrupts an auto-inhibited conformation. Nat. Commun. 11, 1120 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greber, B. J., Toso, D. B., Fang, J. & Nogales, E. The complete structure of the human TFIIH core complex. eLife 8, e44771 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuper, J. et al. XPD stalled on cross-linked DNA provides insight into damage verification. Nat. Struct. Mol. Biol. 31, 1580–1588 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, J. & Pavletich, N. P. Structure and conformational change of a replication protein A heterotrimer bound to ssDNA. Genes Dev. 26, 2337–2347 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yates, L. A. et al. A structural and dynamic model for the assembly of Replication Protein A on single-stranded DNA. Nat. Commun. 9, 5447 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bochkarev, A., Pfuetzner, R. A., Edwards, A. M. & Frappier, L. Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385, 176–181 (1997).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mer, G. et al. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103, 449–456 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. et al. Two interaction surfaces between XPA and RPA organize the preincision complex in nucleotide excision repair. Proc. Natl Acad. Sci. USA 119, e2207408119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsodikov, O. V. et al. Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA. EMBO J. 26, 4768–4776 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsutakawa, S. E. et al. Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc. Natl Acad. Sci. USA 117, 14127–14138 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fassihi, H. et al. Deep phenotyping of 89 xeroderma pigmentosum patients reveals unexpected heterogeneity dependent on the precise molecular defect. Proc. Natl Acad. Sci. USA 113, E1236–1245 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tapias, A. et al. Ordered conformational changes in damaged DNA induced by nucleotide excision repair factors. J. Biol. Chem. 279, 19074–19083 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Heuvel, D. et al. A disease-associated XPA allele interferes with TFIIH binding and primarily affects transcription-coupled nucleotide excision repair. Proc. Natl Acad. Sci. USA 120, e2208860120 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orelli, B. et al. The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J. Biol. Chem. 285, 3705–3712 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sung, P. et al. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365, 852–855 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coin, F. et al. Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat. Genet. 20, 184–188 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aibara, S., Schilbach, S. & Cramer, P. Structures of mammalian RNA polymerase II pre-initiation complexes. Nature 594, 124–128 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sia, Y., Pan, H., Chen, K. & Chen, Z. Structural insights into chromatin remodeling by ISWI during active ATP hydrolysis. Science 388, eadu5654 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Agrawal, S. et al. Human RPA is an essential telomerase processivity factor for maintaining telomeres. Science 390, 495–502 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henricksen, L. A., Umbricht, C. B. & Wold, M. S. Recombinant replication protein A: expression, complex formation, and functional characterization. J. Biol. Chem. 269, 11121–11132 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kastner, B. et al. GraFix: sample preparation for single-particle electron cryomicroscopy. Nat. Methods 5, 53–55 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y. & Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shukla, A. K. et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 512, 218–222 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q., Palovcak, E., Armache, J. P., Verba, K. A., Cheng, Y. & Agard, D. A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Leiro, R. & Scheres, S. H. W. A pipeline approach to single-particle processing in RELION. Acta Crystallogr. D 73, 496–502 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Swint-Kruse, L. & Brown, C. S. Resmap: automated representation of macromolecular interfaces as two-dimensional networks. Bioinformatics 21, 3327–3328 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments