Thursday, February 12, 2026
No menu items!
HomeNatureAluminium redox catalysis enables cyclotrimerization of alkynes

Aluminium redox catalysis enables cyclotrimerization of alkynes

  • Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC Press, 2016).

  • Ni, C., Ma, X., Yang, Z. & Roesky, H. W. Recent advances in aluminum compounds for catalysis. Eur. J. Inorg. Chem. 2022, e202100929 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. & Liu, L. L. A free aluminylene with diverse σ-donating and doubly σ/π-accepting ligand features for transition metals. Angew. Chem. Int. Ed. 60, 27062–27069 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Reppe, W. & Schweckendiek, W. J. Cyclisierende Polymerisation Von Acetylen. 3. Benzol, Benzolderivate Und Hydroaromatische Verbindungen. Justus Liebigs Ann. Chem. 560, 104–116 (1948).

    Article 
    CAS 

    Google Scholar
     

  • Broere, D. L. J. & Ruijter, E. Recent advances in transition-metal-catalyzed [2+2+2]-cyclo(co)trimerization reactions. Synthesis 44, 2639–2672 (2012).

    Article 
    CAS 

    Google Scholar
     

  • de Graauw, C. F., Peters, J. A., van Bekkum, H. & Huskens, J. Meerwein–Ponndorf–Verley reductions and oppenauer oxidations: an integrated approach. Synthesis 1994, 1007–1017 (1994).

    Article 

    Google Scholar
     

  • Boor, J. Jr. Review of recent literature on Ziegler-type catalysts. Ind. Eng. Chem. Prod. Res. Dev. 9, 437–456 (1970).

    CAS 

    Google Scholar
     

  • Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Asay, M., Jones, C. & Driess, M. N-heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev. 111, 354–396 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunn, N. L., Ha, M. & Radosevich, A. T. Main group redox catalysis: reversible PIII/PV redox cycling at a phosphorus platform. J. Am. Chem. Soc. 134, 11330–11333 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbenseth, J. & Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis. Chem. Sci. 11, 9728–9740 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipshultz, J. M., Li, G. & Radosevich, A. T. Main group redox catalysis of organopnictogens: vertical periodic trends and emerging opportunities in group 15. J. Am. Chem. Soc. 143, 1699–1721 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, C., Smaligo, A. J., Song, X.-R. & Kwon, O. Phosphorus-based catalysis. ACS Cent. Sci. 7, 536–558 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, M., Li, K., Zhang, Z. & Zhou, J. Antimony redox catalysis: hydroboration of disulfides through unique Sb(I)/Sb(III) redox cycling. J. Am. Chem. Soc. 146, 20432–20438 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty, E. & Weiss, R. Organoantimony: a versatile main-group platform for pnictogen-bonding and redox catalysis. Chem. Soc. Rev. https://doi.org/10.1039/D3CS00332A (2025).

  • Planas, O., Wang, F., Leutzsch, M. & Cornella, J. Fluorination of arylboronic esters enabled by bismuth redox catalysis. Science 367, 313–317 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mato, M. et al. Bismuth radical catalysis in the activation and coupling of redox-active electrophiles. Nat. Chem. 15, 1138–1145 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moon, H. W. & Cornella, J. Bismuth redox catalysis: an emerging main-group platform for organic synthesis. ACS Catal. 12, 1382–1393 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mato, M. & Cornella, J. Bismuth in radical chemistry and catalysis. Angew. Chem. Int. Ed. 63, e202315046 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dohmeier, C., Robl, C., Tacke, M. & Schnöckel, H. The tetrameric aluminum(I) compound [{Al(η5-C5Me5)}4]. Angew. Chem. Int. Ed. 30, 564–565 (1991).

    Article 

    Google Scholar
     

  • Cui, C. et al. Synthesis and structure of a monomeric aluminum(I) compound [{HC(CMeNAr)2}Al] (Ar=2,6–iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Ed. 39, 4274–4276 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, X., Cheng, X., Song, H. & Cui, C. Synthesis of HC[(CBut)(NAr)]2Al (Ar = 2,6-Pri2C6H3) and its reaction with isocyanides, a bulky azide, and H2O. Organometallics 26, 1039–1043 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Hofmann, A., Tröster, T., Kupfer, T. & Braunschweig, H. Monomeric Cp3tAl(I): synthesis, reactivity, and the concept of valence isomerism. Chem. Sci. 10, 3421–3428 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Queen, J. D., Lehmann, A., Fettinger, J. C., Tuononen, H. M. & Power, P. P. The monomeric alanediyl:AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2): an organoaluminum(I) compound with a one-coordinate aluminum atom. J. Am. Chem. Soc. 142, 20554–20559 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinz, A. & Müller, M. P. Attempted reduction of a carbazolyl-diiodoalane. Chem. Commun. 57, 12532–12535 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bischoff, I.-A. et al. A lithium–aluminium heterobimetallic dimetallocene. Nat. Chem. 16, 1093–1100 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baeza, J. M. L. et al. Isolable three-coordinate base-stabilized alumylene: a precursor of persistent acceptor-free monomeric aluminum oxide. Angew. Chem. Int. Ed. 64, e202505181 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Bag, P., Porzelt, A., Altmann, P. J. & Inoue, S. A stable neutral compound with an aluminum–aluminum double bond. J. Am. Chem. Soc. 139, 14384–14387 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coles, M. P. & Evans, M. J. The emerging chemistry of the aluminyl anion. Chem. Commun. 59, 503–519 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, H. et al. A stable aluminacyclopropene LAl(η2-C2H2) and its end-on azide insertion to an aluminaazacyclobutene. Angew. Chem. Int. Ed. 44, 5090–5093 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, H. et al. Aluminacyclopropene: syntheses, characterization, and reactivity toward terminal alkynes. J. Am. Chem. Soc. 128, 5100–5108 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugita, K., Nakano, R. & Yamashita, M. Cycloaddition of dialkylalumanyl anion toward unsaturated hydrocarbons in (1+2) and (1+4) modes. Chem. Eur. J. 26, 2174–2177 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Falconer, R. L., Byrne, K. M., Nichol, G. S., Krämer, T. & Cowley, M. J. Reversible dissociation of a dialumene. Angew. Chem. Int. Ed. 60, 24702–24708 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Wang, H., Kong, L. & Liu, L. L. Carbene-stabilized aluminacyclopropene–cyclopropenylalane rearrangement. Organometallics 43, 2392–2396 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H.-Y. et al. Allosteric differentiation of Al(I) reactivity. Chem. Eur. J. 31, e202501352 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Transfer of an aluminum atom: an avenue to aluminum heterocycles. CCS Chem. 5, 2059–2068 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Eisch, J. J. & Harrell, R. L. Addition and oligomerization products from the reaction of diphenylacetylene with triphenylaluminum. J. Organomet. Chem. 20, 257–260 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Agou, T. et al. Ring rxpansion to 1-bromo-1-alumacyclonona-2,4,6,8-tetraene by insertion of two alkyne molecules into the Al–C bonds. Angew. Chem. Int. Ed. 54, 9568–9571 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Reversible, room-temperature C–C bond activation of benzene by an isolable metal complex. J. Am. Chem. Soc. 141, 11000–11003 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. & Liu, L. L. Modulating the frontier orbitals of an aluminylene for facile dearomatization of inert arenes. Angew. Chem. Int. Ed. 61, e202116658 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ganesamoorthy, C. et al. Reductive elimination: a pathway to low-valent aluminium species. Chem. Commun. 49, 2858–2860 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Urwin, S. J., Rogers, D. M., Nichol, G. S. & Cowley, M. J. Ligand coordination modulates reductive elimination from aluminium(III). Dalton Trans. 45, 13695–13699 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sugahara, T., Guo, J.-D., Sasamori, T., Nagase, S. & Tokitoh, N. Regioselective cyclotrimerization of terminal alkynes using a digermyne. Angew. Chem. Int. Ed. 57, 3499–3503 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, T. & Chen, Q. Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kapp, J., Schade, C., El-Nahasa, A. M. & von Ragué Schleyer, P. Heavy element π donation is not less effective. Angew. Chem. Int. Ed. 35, 2236–2238 (1996).

    Article 

    Google Scholar
     

  • Hinz, A. Pseudo-one-coordinate tetrylenium salts bearing a bulky carbazolyl substituent. Chem. Eur. J. 25, 3267–3271 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karpiniec, S. S., McGuinness, D. S., Britovsek, G. J. P. & Patel, J. Acetylene cyclotrimerization with an iron(II) bis(imino)pyridine catalyst. Organometallics 31, 3439–3442 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lipschutz, M. I., Chantarojsiri, T., Dong, Y. & Tilley, T. D. Synthesis, characterization, and alkyne trimerization catalysis of a heteroleptic two-coordinate FeI complex. J. Am. Chem. Soc. 137, 6366–6372 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neumeier, M. et al. Combined photoredox and iron catalysis for the cyclotrimerization of alkynes. Angew. Chem. Int. Ed. 59, 13473–13478 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pang, Y., Leutzsch, M., Nöthling, N., Katzenburg, F. & Cornella, J. Catalytic hydrodefluorination via oxidative addition, ligand metathesis, and reductive elimination at Bi(I)/Bi(III) centers. J. Am. Chem. Soc. 143, 12487–12493 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pang, Y., Leutzsch, M., Nöthling, N. & Cornella, J. Catalytic activation of N2O at a low-valent bismuth redox platform. J. Am. Chem. Soc. 142, 19473–19479 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments