Haynes, W. M. CRC Handbook of Chemistry and Physics (CRC Press, 2016).
Ni, C., Ma, X., Yang, Z. & Roesky, H. W. Recent advances in aluminum compounds for catalysis. Eur. J. Inorg. Chem. 2022, e202100929 (2022).
Zhang, X. & Liu, L. L. A free aluminylene with diverse σ-donating and doubly σ/π-accepting ligand features for transition metals. Angew. Chem. Int. Ed. 60, 27062–27069 (2021).
Reppe, W. & Schweckendiek, W. J. Cyclisierende Polymerisation Von Acetylen. 3. Benzol, Benzolderivate Und Hydroaromatische Verbindungen. Justus Liebigs Ann. Chem. 560, 104–116 (1948).
Broere, D. L. J. & Ruijter, E. Recent advances in transition-metal-catalyzed [2+2+2]-cyclo(co)trimerization reactions. Synthesis 44, 2639–2672 (2012).
de Graauw, C. F., Peters, J. A., van Bekkum, H. & Huskens, J. Meerwein–Ponndorf–Verley reductions and oppenauer oxidations: an integrated approach. Synthesis 1994, 1007–1017 (1994).
Boor, J. Jr. Review of recent literature on Ziegler-type catalysts. Ind. Eng. Chem. Prod. Res. Dev. 9, 437–456 (1970).
Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).
Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).
Asay, M., Jones, C. & Driess, M. N-heterocyclic carbene analogues with low-valent group 13 and group 14 elements: syntheses, structures, and reactivities of a new generation of multitalented ligands. Chem. Rev. 111, 354–396 (2011).
Dunn, N. L., Ha, M. & Radosevich, A. T. Main group redox catalysis: reversible PIII/PV redox cycling at a phosphorus platform. J. Am. Chem. Soc. 134, 11330–11333 (2012).
Abbenseth, J. & Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis. Chem. Sci. 11, 9728–9740 (2020).
Lipshultz, J. M., Li, G. & Radosevich, A. T. Main group redox catalysis of organopnictogens: vertical periodic trends and emerging opportunities in group 15. J. Am. Chem. Soc. 143, 1699–1721 (2021).
Xie, C., Smaligo, A. J., Song, X.-R. & Kwon, O. Phosphorus-based catalysis. ACS Cent. Sci. 7, 536–558 (2021).
Huang, M., Li, K., Zhang, Z. & Zhou, J. Antimony redox catalysis: hydroboration of disulfides through unique Sb(I)/Sb(III) redox cycling. J. Am. Chem. Soc. 146, 20432–20438 (2024).
Chakraborty, E. & Weiss, R. Organoantimony: a versatile main-group platform for pnictogen-bonding and redox catalysis. Chem. Soc. Rev. https://doi.org/10.1039/D3CS00332A (2025).
Planas, O., Wang, F., Leutzsch, M. & Cornella, J. Fluorination of arylboronic esters enabled by bismuth redox catalysis. Science 367, 313–317 (2020).
Mato, M. et al. Bismuth radical catalysis in the activation and coupling of redox-active electrophiles. Nat. Chem. 15, 1138–1145 (2023).
Moon, H. W. & Cornella, J. Bismuth redox catalysis: an emerging main-group platform for organic synthesis. ACS Catal. 12, 1382–1393 (2022).
Mato, M. & Cornella, J. Bismuth in radical chemistry and catalysis. Angew. Chem. Int. Ed. 63, e202315046 (2024).
Dohmeier, C., Robl, C., Tacke, M. & Schnöckel, H. The tetrameric aluminum(I) compound [{Al(η5-C5Me5)}4]. Angew. Chem. Int. Ed. 30, 564–565 (1991).
Cui, C. et al. Synthesis and structure of a monomeric aluminum(I) compound [{HC(CMeNAr)2}Al] (Ar=2,6–iPr2C6H3): a stable aluminum analogue of a carbene. Angew. Chem. Int. Ed. 39, 4274–4276 (2000).
Li, X., Cheng, X., Song, H. & Cui, C. Synthesis of HC[(CBut)(NAr)]2Al (Ar = 2,6-Pri2C6H3) and its reaction with isocyanides, a bulky azide, and H2O. Organometallics 26, 1039–1043 (2007).
Hofmann, A., Tröster, T., Kupfer, T. & Braunschweig, H. Monomeric Cp3tAl(I): synthesis, reactivity, and the concept of valence isomerism. Chem. Sci. 10, 3421–3428 (2019).
Queen, J. D., Lehmann, A., Fettinger, J. C., Tuononen, H. M. & Power, P. P. The monomeric alanediyl:AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2): an organoaluminum(I) compound with a one-coordinate aluminum atom. J. Am. Chem. Soc. 142, 20554–20559 (2020).
Hinz, A. & Müller, M. P. Attempted reduction of a carbazolyl-diiodoalane. Chem. Commun. 57, 12532–12535 (2021).
Bischoff, I.-A. et al. A lithium–aluminium heterobimetallic dimetallocene. Nat. Chem. 16, 1093–1100 (2024).
Baeza, J. M. L. et al. Isolable three-coordinate base-stabilized alumylene: a precursor of persistent acceptor-free monomeric aluminum oxide. Angew. Chem. Int. Ed. 64, e202505181 (2025).
Bag, P., Porzelt, A., Altmann, P. J. & Inoue, S. A stable neutral compound with an aluminum–aluminum double bond. J. Am. Chem. Soc. 139, 14384–14387 (2017).
Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).
Coles, M. P. & Evans, M. J. The emerging chemistry of the aluminyl anion. Chem. Commun. 59, 503–519 (2023).
Zhu, H. et al. A stable aluminacyclopropene LAl(η2-C2H2) and its end-on azide insertion to an aluminaazacyclobutene. Angew. Chem. Int. Ed. 44, 5090–5093 (2005).
Zhu, H. et al. Aluminacyclopropene: syntheses, characterization, and reactivity toward terminal alkynes. J. Am. Chem. Soc. 128, 5100–5108 (2006).
Sugita, K., Nakano, R. & Yamashita, M. Cycloaddition of dialkylalumanyl anion toward unsaturated hydrocarbons in (1+2) and (1+4) modes. Chem. Eur. J. 26, 2174–2177 (2020).
Falconer, R. L., Byrne, K. M., Nichol, G. S., Krämer, T. & Cowley, M. J. Reversible dissociation of a dialumene. Angew. Chem. Int. Ed. 60, 24702–24708 (2021).
Zhang, X., Wang, H., Kong, L. & Liu, L. L. Carbene-stabilized aluminacyclopropene–cyclopropenylalane rearrangement. Organometallics 43, 2392–2396 (2024).
Liu, H.-Y. et al. Allosteric differentiation of Al(I) reactivity. Chem. Eur. J. 31, e202501352 (2025).
Zhang, X. et al. Transfer of an aluminum atom: an avenue to aluminum heterocycles. CCS Chem. 5, 2059–2068 (2023).
Eisch, J. J. & Harrell, R. L. Addition and oligomerization products from the reaction of diphenylacetylene with triphenylaluminum. J. Organomet. Chem. 20, 257–260 (1969).
Agou, T. et al. Ring rxpansion to 1-bromo-1-alumacyclonona-2,4,6,8-tetraene by insertion of two alkyne molecules into the Al–C bonds. Angew. Chem. Int. Ed. 54, 9568–9571 (2015).
Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Reversible, room-temperature C–C bond activation of benzene by an isolable metal complex. J. Am. Chem. Soc. 141, 11000–11003 (2019).
Zhang, X. & Liu, L. L. Modulating the frontier orbitals of an aluminylene for facile dearomatization of inert arenes. Angew. Chem. Int. Ed. 61, e202116658 (2022).
Ganesamoorthy, C. et al. Reductive elimination: a pathway to low-valent aluminium species. Chem. Commun. 49, 2858–2860 (2013).
Urwin, S. J., Rogers, D. M., Nichol, G. S. & Cowley, M. J. Ligand coordination modulates reductive elimination from aluminium(III). Dalton Trans. 45, 13695–13699 (2016).
Sugahara, T., Guo, J.-D., Sasamori, T., Nagase, S. & Tokitoh, N. Regioselective cyclotrimerization of terminal alkynes using a digermyne. Angew. Chem. Int. Ed. 57, 3499–3503 (2018).
Mantina, M., Chamberlin, A. C., Valero, R., Cramer, C. J. & Truhlar, D. G. Consistent van der Waals radii for the whole main group. J. Phys. Chem. A 113, 5806–5812 (2009).
Lu, T. & Chen, Q. Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).
Kapp, J., Schade, C., El-Nahasa, A. M. & von Ragué Schleyer, P. Heavy element π donation is not less effective. Angew. Chem. Int. Ed. 35, 2236–2238 (1996).
Hinz, A. Pseudo-one-coordinate tetrylenium salts bearing a bulky carbazolyl substituent. Chem. Eur. J. 25, 3267–3271 (2019).
Karpiniec, S. S., McGuinness, D. S., Britovsek, G. J. P. & Patel, J. Acetylene cyclotrimerization with an iron(II) bis(imino)pyridine catalyst. Organometallics 31, 3439–3442 (2012).
Lipschutz, M. I., Chantarojsiri, T., Dong, Y. & Tilley, T. D. Synthesis, characterization, and alkyne trimerization catalysis of a heteroleptic two-coordinate FeI complex. J. Am. Chem. Soc. 137, 6366–6372 (2015).
Neumeier, M. et al. Combined photoredox and iron catalysis for the cyclotrimerization of alkynes. Angew. Chem. Int. Ed. 59, 13473–13478 (2020).
Pang, Y., Leutzsch, M., Nöthling, N., Katzenburg, F. & Cornella, J. Catalytic hydrodefluorination via oxidative addition, ligand metathesis, and reductive elimination at Bi(I)/Bi(III) centers. J. Am. Chem. Soc. 143, 12487–12493 (2021).
Pang, Y., Leutzsch, M., Nöthling, N. & Cornella, J. Catalytic activation of N2O at a low-valent bismuth redox platform. J. Am. Chem. Soc. 142, 19473–19479 (2020).

