Wednesday, February 11, 2026
No menu items!
HomeNatureLarge-scale quantum communication networks with integrated photonics

Large-scale quantum communication networks with integrated photonics

  • Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).

    Article 
    MathSciNet 

    Google Scholar
     

  • Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD Network. Opt. Express 19, 10387–10409 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stucki, D. et al. Long-term performance of the SwissQuantum quantum key distribution network in a field environment. New J. Phys. 13, 123001 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Dynes, J. F. et al. Cambridge quantum network. npj Quantum Inf. 5, 101 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Townsend, P. D. Quantum cryptography on multiuser optical fibre networks. Nature 385, 47–49 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fröhlich, B. et al. A quantum access network. Nature 501, 69–72 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wengerowsky, S., Joshi, S. K., Steinlechner, F., Hübel, H. & Ursin, R. An entanglement-based wavelength-multiplexed quantum communication network. Nature 564, 225–228 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Y. et al. Multichip multidimensional quantum networks with entanglement retrievability. Science 381, 221–226 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, X., Hu, J., Curty, M., Qian, L. & Lo, H.-K. Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett. 123, 100506 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Minder, M. et al. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 13, 334–338 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pittaluga, M. et al. 600-km repeater-like quantum communications with dual-band stabilization. Nat. Photonics 15, 530–535 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Twin-field quantum key distribution over 830-km fibre. Nat. Photonics 16, 154–161 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, Y. et al. Experimental twin-field quantum key distribution over 1000 km fiber distance. Phys. Rev. Lett. 130, 210801 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, L., Lin, J., Jing, Y. & Yuan, Z. Twin-field quantum key distribution without optical frequency dissemination. Nat. Commun. 14, 928 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pittaluga, M. et al. Long-distance coherent quantum communications in deployed telecom networks. Nature 640, 911–917 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photonics 13, 158–169 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photonics 16, 95–108 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics 15, 346–353 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mogensen, F., Olesen, H. & Jacobsen, G. Locking conditions and stability properties for a semiconductor laser with external light injection. IEEE J. Quantum Electron. 21, 784–793 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Fang, X.-T. et al. Implementation of quantum key distribution surpassing the linear rate-transmittance bound. Nat. Photonics 14, 422–425 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, C. et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica 3, 1274–1278 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sibson, P. et al. Chip-based quantum key distribution. Nat. Commun. 8, 13984 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bunandar, D. et al. Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X 8, 021009 (2018).

    CAS 

    Google Scholar
     

  • Ding, Y. et al. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. npj Quantum Inf. 3, 25 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, W. et al. High-rate quantum key distribution exceeding 110 Mb s−1. Nat. Photonics 17, 416–421 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sax, R. et al. High-speed integrated QKD system. Photon. Res. 11, 1007–1014 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Paraïso, T. K. et al. A photonic integrated quantum secure communication system. Nat. Photonics 15, 850–856 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Semenenko, H. et al. Chip-based measurement-device-independent quantum key distribution. Optica 7, 238–242 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wei, K. et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys. Rev. X 10, 031030 (2020).

    CAS 

    Google Scholar
     

  • Zheng, X. et al. Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution. Adv. Photonics 3, 055002 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, X. et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat. Phys. 15, 373–381 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Du, H. et al. Twin-field quantum key distribution with optical injection locking and phase encoding on-chip. Optica 11, 1385–1390 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yan, W. et al. A measurement-device-independent quantum key distribution network using optical frequency comb. npj Quantum Inf. 11, 97 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, Z. et al. Correlated self-heterodyne method for ultra-low-noise laser linewidth measurements. Opt. Express 30, 25147–25161 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123, 100505 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, J.-P. et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photonics 15, 570–575 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X.-B., Yu, Z.-W. & Hu, X.-L. Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H., Yu, Z.-W., Jiang, C., Hu, X.-L. & Wang, X.-B. Sending-or-not-sending twin-field quantum key distribution: breaking the direct transmission key rate. Phys. Rev. A 101, 042330 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Moille, G. et al. Ultra-broadband Kerr microcomb through soliton spectral translation. Nat. Commun. 12, 7275 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latkowski, S. et al. Novel widely tunable monolithically integrated laser source. IEEE Photonics J. 7, 1503709 (2019).


    Google Scholar
     

  • Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alexander, K. et al. A manufacturable platform for photonic quantum computing. Nature 641, 876–883 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Hu, Y. et al. On-chip electro-optic frequency shifters and beam splitters. Nature 599, 587–593 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, J. et al. Very-large-scale integrated quantum graph photonics. Nat. Photonics 17, 573–581 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shen, Q. et al. Free-space dissemination of time and frequency with 10−19 instability over 113 km. Nature 610, 661–666 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Microcomb-synchronized optoelectronics. Nat. Electron. 8, 322–330 (2025).

    Article 

    Google Scholar
     

  • Liao, S.-K. et al. Satellite-to-ground quantum key distribution. Nature 549, 43–47 (2017).

  • Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016).

  • Tang, Y.-L. et al. Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6, 011024 (2016).

  • RELATED ARTICLES

    Most Popular

    Recent Comments