Friday, February 6, 2026
No menu items!
HomeNatureSpin-wave band-pass filters for 6G communication

Spin-wave band-pass filters for 6G communication

  • Levchenko, K. O., Davídková, K., Mikkelsen, J. & Chumak, A. V. Review on spin-wave RF applications. Preprint at https://arxiv.org/abs/2411.19212 (2024).

  • Cui, Z., Zhang, P. & Pollin, S. 6G Wireless communications in 7–24 GHz band: opportunities, techniques, and challenges. In 2025 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) (ed. Saunders, S.) 1–8 (IEEE, 2025).

  • Holma, H., Viswanathan, H. & Mogensen, P. Extreme massive MIMO for macro cell capacity boost in 5G-Advanced and 6G. Nokia Bell Labs https://onestore.nokia.com/asset/210786 (2021).

  • Wang, C.-X. et al. On the road to 6G: visions, requirements, key technologies, and testbeds. IEEE Commun. Surv. Tutor. 25, 905–974 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Andrews, J. G., Humphreys, T. E. & Ji, T. 6G takes shape. IEEE BITS Inf. Theory Mag. 4, 2–24 (2024).

    Article 

    Google Scholar
     

  • Hagelauer, A. et al. From microwave acoustic filters to millimeter-wave operation and new applications. IEEE J. Microw. 3, 484–508 (2023).

    Article 

    Google Scholar
     

  • Ruby, R. A snapshot in time: the future in filters for cell phones. IEEE Microw. Mag. 16, 46–59 (2015).

    Article 

    Google Scholar
     

  • Anusorn, T. et al. Practical demonstrations of FR3-band thin-film lithium niobate acoustic filter design. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 72, 1650–1662 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, K. et al. SV-SAW RF filters based on low-cost 128°Y LiNbO3/SiO2/poly-Si/Si substrate for 6G cmWave wireless communications. Microsyst. Nanoeng. 11, 79 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izhar, M. M. A. et al. Periodically poled aluminum scandium nitride bulk acoustic wave resonators and filters for communications in the 6G era. Microsyst. Nanoeng. 11, 19 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giribaldi, G., Colombo, L., Simeoni, P. & Rinaldi, M. Compact and wideband nanoacoustic pass-band filters for future 5G and 6G cellular radios. Nat. Commun. 15, 304 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emilio, M. D. P. Resonant’s RF filters for 5G technology. EE Times https://www.eetimes.com/resonants-rf-filters-for-5g-technology/ (2021).

  • Zhu, X., Phillips, J. D. & Mortazawi, A. A DC voltage dependant switchable thin film bulk wave acoustic resonator using ferroelectric thin film. In Proc. 2007 IEEE/MTT-S International Microwave Symposium, 671–674 (IEEE, 2007).

  • Hummel, G., Hui, Y. & Rinaldi, M. Reconfigurable piezoelectric MEMS resonator using phase change material programmable vias. J. Microelectromechanical Syst. 24, 2145–2151 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fouladi Azarnaminy, A. & Mansour, R. R. Switched dual-band SAW filters using hybrid and monolithically integrated vanadium oxide switches. IEEE Trans. Microw. Theory Tech. 70, 876–885 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hashimoto, K. -y et al. Moving tunable filters forward: a \“heterointegration\” research project for tunable filters combining MEMS and RF SAW\/BAW technologies. IEEE Microw. Mag. 16, 89–97 (2015).

    Article 

    Google Scholar
     

  • Stancil, D. D. Theory of Magnetostatic Waves (Springer, 1993).

  • Ishak, W. Magnetostatic wave technology: a review. Proc. IEEE 76, 171–187 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Tiwari, S., Ashok, A., Devitt, C., Bhave, S. A. & Wang, R. High-performance magnetostatic wave resonators based on deep anisotropic etching of gadolinium gallium garnet substrates. Nat. Electron. 8, 267–275 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Du, X. et al. Frequency tunable magnetostatic wave filters with zero static power magnetic biasing circuitry. Nat. Commun. 15, 3582 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, X. et al. A wideband tunable, nonreciprocal bandpass filter using magnetostatic surface waves with zero static power consumption. Preprint at https://arxiv.org/abs/2505.09845 (2025).

  • Devitt, C., Tiwari, S., Bhave, S. A. & Wang, R. A Distributed magnetostatic resonator. IEEE Tran. Microw. Theory Tech. 72, 5679–5686 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wang, R. et al. Temperature compensated magnetostatic wave resonator microsystem. In Proc. 2024 IEEE/MTT-S International Microwave Symposium – IMS 2024 (IEEE, 2024).

  • Tikhonov, V. V., Litvinenko, A. N., Nikitov, S. A. & Suchkov, S. G. Temperature stabilization of spin-wave ferrite devices. J. Commun. Technol. Electron. 58, 75–81 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Micro Lambda Wireless, Inc. MLFD Series Dual-Two. Technical report. Micro Lambda Wireless https://www.microlambdawireless.com/uploads/pdfs/MLFD%20Series%20Dual-Two.pdf.

  • Marcelli, R., De Gasperis, P. & Marescialli, L. A tunable, high Q magnetostatic volume wave oscillator based on straight edge YIG resonators. IEEE Tran. Magn. 27, 5477–5479 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Adam, J. An MSW tunable bandpass filter. In Proc. IEEE 1985 Ultrasonics Symposium, 157–162 (IEEE, 1985).

  • Yang, G.-M., Wu, J., Lou, J., Liu, M. & Sun, N. X. Low-loss magnetically tunable bandpass filters with YIG films. IEEE Trans. Magn. 49, 5063–5068 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, J., Yang, X., Beguhn, S., Lou, J. & Sun, N. X. Nonreciprocal tunable low-loss bandpass filters with ultra-wideband isolation based on magnetostatic surface wave. IEEE Trans. Microw. Theory Tech. 60, 3959–3968 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Tsai, C. S. & Qiu, G. Wideband microwave filters using ferromagnetic resonance tuning in flip-chip YIG-GaAs layer structures. IEEE Trans. Magn. 45, 656–660 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, Y., Qiu, G., Chi, K. H., Wang, B. B. & Tsai, C. S. A tunable X-band band-pass filter module using YIG/GGG layer on RT/duroid substrate. IEEE Trans. Magn. 45, 4195–4198 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Shakya, D. et al. Comprehensive FR1(C) and FR3 lower and upper mid-band propagation and material penetration loss measurements and channel models in indoor environment for 5G and 6G. IEEE Open J. Commun. Soc. 5, 5192–5218 (2024).

    Article 

    Google Scholar
     

  • Wu, S., Yao, S., Du, X., Chang, C.-Y. & Olsson III, R. H. Spatially tailored spin wave excitation for spurious-free, low-loss magnetostatic wave filters with ultra-wide frequency tunability. Preprint at https://arxiv.org/abs/2507.14469 (2025).

  • Giribaldi, G., Colombo, L. & Rinaldi, M. 6-20 GHz 30% ScAlN lateral field-excited cross-sectional Lamé mode resonators for future mobile RF front ends. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 70, 1201–1212 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gilbert, T. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443–3449 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chumak, A. V. et al. Advances in magnetics roadmap on spin-wave computing. IEEE Trans. Magn. 58, 1–72 (2022).

    Article 

    Google Scholar
     

  • Beaujour, J.-M., Ravelosona, D., Tudosa, I., Fullerton, E. E. & Kent, A. D. Ferromagnetic resonance linewidth in ultrathin films with perpendicular magnetic anisotropy. Phys. Rev. B 80, 180415 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Devitt, C., Wang, R., Tiwari, S. & Bhave, S. A. An edge-coupled magnetostatic bandpass filter. Nat. Commun. 15, 7764 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Costa, J. D. et al. Compact tunable YIG-based RF resonators. Appl. Phys. Lett. 118, 162406 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Du, X. et al. Meander line transducer empowered low-loss tunable magnetostatic wave filters with zero static power consumption. In Proc. 2024 IEEE/MTT-S International Microwave Symposium – IMS 2024, 42–45 (IEEE, 2024).

  • Feng, Y., Tiwari, S., Bhave, S. A. & Wang, R. Micromachined tunable magnetostatic forward volume wave bandstop filter. IEEE Microw. Wirel. Technol. Lett. 33, 807–810 (2023).

    Article 

    Google Scholar
     

  • Torrieri, D. Principles of Spread-Spectrum Communication Systems (Springer, 2018).

  • Torrieri, D. Frequency-hopping communication systems. Technical report, Defense Technical Information Center http://www.dtic.mil/docs/citations/ADA412987 (2003).

  • Tse, D. & Viswanath, P. Fundamentals of Wireless Communication (Cambridge Univ. Press, 2005).

  • Holmes, J. K. Spread Spectrum Systems for GNSS and Wireless Communications (Artech House, 2007).

  • Du, S., Yang, Q., Fan, X., Wang, M. & Zhang, H. A compact and low-loss tunable bandpass filter using YIG/GGG film structures. IEEE Microw. Wirel. Technol. Lett. 33, 259–262 (2023).

    Article 

    Google Scholar
     

  • Entesari, K. & Rebeiz, G. A differential 4-bit 6.5-10-GHz RF MEMS tunable filter. IEEE Trans. Microw. Theory Tech. 53, 1103–1110 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Liu, B. et al. A 10-17 GHz continuously tunable CMOS filter with flexible bandwidth control based on mode-switching inductors. IEEE Microw. Wirel. Technol. Lett. 35, 816–819 (2025).

    Article 

    Google Scholar
     

  • Dai, S., Bhave, S. A. & Wang, R. Octave-tunable magnetostatic wave YIG resonators on a chip. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 2454–2460 (2020).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Devitt, C., Tiwari, S., Zivasatienraj, B. & Bhave, S. Dataset for spinwave bandpass filters for 6G communication. Zenodo https://doi.org/10.5281/zenodo.17833549 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments