Levchenko, K. O., Davídková, K., Mikkelsen, J. & Chumak, A. V. Review on spin-wave RF applications. Preprint at https://arxiv.org/abs/2411.19212 (2024).
Cui, Z., Zhang, P. & Pollin, S. 6G Wireless communications in 7–24 GHz band: opportunities, techniques, and challenges. In 2025 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN) (ed. Saunders, S.) 1–8 (IEEE, 2025).
Holma, H., Viswanathan, H. & Mogensen, P. Extreme massive MIMO for macro cell capacity boost in 5G-Advanced and 6G. Nokia Bell Labs https://onestore.nokia.com/asset/210786 (2021).
Wang, C.-X. et al. On the road to 6G: visions, requirements, key technologies, and testbeds. IEEE Commun. Surv. Tutor. 25, 905–974 (2023).
Andrews, J. G., Humphreys, T. E. & Ji, T. 6G takes shape. IEEE BITS Inf. Theory Mag. 4, 2–24 (2024).
Hagelauer, A. et al. From microwave acoustic filters to millimeter-wave operation and new applications. IEEE J. Microw. 3, 484–508 (2023).
Ruby, R. A snapshot in time: the future in filters for cell phones. IEEE Microw. Mag. 16, 46–59 (2015).
Anusorn, T. et al. Practical demonstrations of FR3-band thin-film lithium niobate acoustic filter design. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 72, 1650–1662 (2025).
Yang, K. et al. SV-SAW RF filters based on low-cost 128°Y LiNbO3/SiO2/poly-Si/Si substrate for 6G cmWave wireless communications. Microsyst. Nanoeng. 11, 79 (2025).
Izhar, M. M. A. et al. Periodically poled aluminum scandium nitride bulk acoustic wave resonators and filters for communications in the 6G era. Microsyst. Nanoeng. 11, 19 (2025).
Giribaldi, G., Colombo, L., Simeoni, P. & Rinaldi, M. Compact and wideband nanoacoustic pass-band filters for future 5G and 6G cellular radios. Nat. Commun. 15, 304 (2024).
Emilio, M. D. P. Resonant’s RF filters for 5G technology. EE Times https://www.eetimes.com/resonants-rf-filters-for-5g-technology/ (2021).
Zhu, X., Phillips, J. D. & Mortazawi, A. A DC voltage dependant switchable thin film bulk wave acoustic resonator using ferroelectric thin film. In Proc. 2007 IEEE/MTT-S International Microwave Symposium, 671–674 (IEEE, 2007).
Hummel, G., Hui, Y. & Rinaldi, M. Reconfigurable piezoelectric MEMS resonator using phase change material programmable vias. J. Microelectromechanical Syst. 24, 2145–2151 (2015).
Fouladi Azarnaminy, A. & Mansour, R. R. Switched dual-band SAW filters using hybrid and monolithically integrated vanadium oxide switches. IEEE Trans. Microw. Theory Tech. 70, 876–885 (2022).
Hashimoto, K. -y et al. Moving tunable filters forward: a \“heterointegration\” research project for tunable filters combining MEMS and RF SAW\/BAW technologies. IEEE Microw. Mag. 16, 89–97 (2015).
Stancil, D. D. Theory of Magnetostatic Waves (Springer, 1993).
Ishak, W. Magnetostatic wave technology: a review. Proc. IEEE 76, 171–187 (1988).
Tiwari, S., Ashok, A., Devitt, C., Bhave, S. A. & Wang, R. High-performance magnetostatic wave resonators based on deep anisotropic etching of gadolinium gallium garnet substrates. Nat. Electron. 8, 267–275 (2025).
Du, X. et al. Frequency tunable magnetostatic wave filters with zero static power magnetic biasing circuitry. Nat. Commun. 15, 3582 (2024).
Du, X. et al. A wideband tunable, nonreciprocal bandpass filter using magnetostatic surface waves with zero static power consumption. Preprint at https://arxiv.org/abs/2505.09845 (2025).
Devitt, C., Tiwari, S., Bhave, S. A. & Wang, R. A Distributed magnetostatic resonator. IEEE Tran. Microw. Theory Tech. 72, 5679–5686 (2024).
Wang, R. et al. Temperature compensated magnetostatic wave resonator microsystem. In Proc. 2024 IEEE/MTT-S International Microwave Symposium – IMS 2024 (IEEE, 2024).
Tikhonov, V. V., Litvinenko, A. N., Nikitov, S. A. & Suchkov, S. G. Temperature stabilization of spin-wave ferrite devices. J. Commun. Technol. Electron. 58, 75–81 (2013).
Micro Lambda Wireless, Inc. MLFD Series Dual-Two. Technical report. Micro Lambda Wireless https://www.microlambdawireless.com/uploads/pdfs/MLFD%20Series%20Dual-Two.pdf.
Marcelli, R., De Gasperis, P. & Marescialli, L. A tunable, high Q magnetostatic volume wave oscillator based on straight edge YIG resonators. IEEE Tran. Magn. 27, 5477–5479 (1991).
Adam, J. An MSW tunable bandpass filter. In Proc. IEEE 1985 Ultrasonics Symposium, 157–162 (IEEE, 1985).
Yang, G.-M., Wu, J., Lou, J., Liu, M. & Sun, N. X. Low-loss magnetically tunable bandpass filters with YIG films. IEEE Trans. Magn. 49, 5063–5068 (2013).
Wu, J., Yang, X., Beguhn, S., Lou, J. & Sun, N. X. Nonreciprocal tunable low-loss bandpass filters with ultra-wideband isolation based on magnetostatic surface wave. IEEE Trans. Microw. Theory Tech. 60, 3959–3968 (2012).
Tsai, C. S. & Qiu, G. Wideband microwave filters using ferromagnetic resonance tuning in flip-chip YIG-GaAs layer structures. IEEE Trans. Magn. 45, 656–660 (2009).
Zhu, Y., Qiu, G., Chi, K. H., Wang, B. B. & Tsai, C. S. A tunable X-band band-pass filter module using YIG/GGG layer on RT/duroid substrate. IEEE Trans. Magn. 45, 4195–4198 (2009).
Shakya, D. et al. Comprehensive FR1(C) and FR3 lower and upper mid-band propagation and material penetration loss measurements and channel models in indoor environment for 5G and 6G. IEEE Open J. Commun. Soc. 5, 5192–5218 (2024).
Wu, S., Yao, S., Du, X., Chang, C.-Y. & Olsson III, R. H. Spatially tailored spin wave excitation for spurious-free, low-loss magnetostatic wave filters with ultra-wide frequency tunability. Preprint at https://arxiv.org/abs/2507.14469 (2025).
Giribaldi, G., Colombo, L. & Rinaldi, M. 6-20 GHz 30% ScAlN lateral field-excited cross-sectional Lamé mode resonators for future mobile RF front ends. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 70, 1201–1212 (2023).
Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434 (1998).
Gilbert, T. A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443–3449 (2004).
Chumak, A. V. et al. Advances in magnetics roadmap on spin-wave computing. IEEE Trans. Magn. 58, 1–72 (2022).
Beaujour, J.-M., Ravelosona, D., Tudosa, I., Fullerton, E. E. & Kent, A. D. Ferromagnetic resonance linewidth in ultrathin films with perpendicular magnetic anisotropy. Phys. Rev. B 80, 180415 (2009).
Devitt, C., Wang, R., Tiwari, S. & Bhave, S. A. An edge-coupled magnetostatic bandpass filter. Nat. Commun. 15, 7764 (2024).
Costa, J. D. et al. Compact tunable YIG-based RF resonators. Appl. Phys. Lett. 118, 162406 (2021).
Du, X. et al. Meander line transducer empowered low-loss tunable magnetostatic wave filters with zero static power consumption. In Proc. 2024 IEEE/MTT-S International Microwave Symposium – IMS 2024, 42–45 (IEEE, 2024).
Feng, Y., Tiwari, S., Bhave, S. A. & Wang, R. Micromachined tunable magnetostatic forward volume wave bandstop filter. IEEE Microw. Wirel. Technol. Lett. 33, 807–810 (2023).
Torrieri, D. Principles of Spread-Spectrum Communication Systems (Springer, 2018).
Torrieri, D. Frequency-hopping communication systems. Technical report, Defense Technical Information Center http://www.dtic.mil/docs/citations/ADA412987 (2003).
Tse, D. & Viswanath, P. Fundamentals of Wireless Communication (Cambridge Univ. Press, 2005).
Holmes, J. K. Spread Spectrum Systems for GNSS and Wireless Communications (Artech House, 2007).
Du, S., Yang, Q., Fan, X., Wang, M. & Zhang, H. A compact and low-loss tunable bandpass filter using YIG/GGG film structures. IEEE Microw. Wirel. Technol. Lett. 33, 259–262 (2023).
Entesari, K. & Rebeiz, G. A differential 4-bit 6.5-10-GHz RF MEMS tunable filter. IEEE Trans. Microw. Theory Tech. 53, 1103–1110 (2005).
Liu, B. et al. A 10-17 GHz continuously tunable CMOS filter with flexible bandwidth control based on mode-switching inductors. IEEE Microw. Wirel. Technol. Lett. 35, 816–819 (2025).
Dai, S., Bhave, S. A. & Wang, R. Octave-tunable magnetostatic wave YIG resonators on a chip. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67, 2454–2460 (2020).
Devitt, C., Tiwari, S., Zivasatienraj, B. & Bhave, S. Dataset for spinwave bandpass filters for 6G communication. Zenodo https://doi.org/10.5281/zenodo.17833549 (2025).

