Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).
Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).
Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).
Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).
Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).
Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).
Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).
Shi, H. & Dai, X. Heavy-fermion representation for twisted bilayer graphene systems. Phys. Rev. B 106, 245129 (2022).
Suhl, H. Dispersion theory of the Kondo effect. Phys. Rev. 138, A515–A523 (1965).
Abrikosov, A. A. Electron scattering on magnetic impurities in metals and anomalous resistivity effects. Phys. Phys. Fiz. 2, 5–20 (1965).
Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).
Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).
Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).
Merino, R. L. et al. Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1078–1084 (2025).
Batlle-Porro, S. et al. Cryo-near-field photovoltage microscopy of heavy-fermion twisted symmetric trilayer graphene. Preprint at http://arxiv.org/abs/2402.12296 (2024).
Ghosh, A. et al. Thermopower probes of emergent local moments in magic-angle twisted bilayer graphene. Nat. Phys. 21, 732–739 (2025).
Călugăru, D. et al. The thermoelectric effect and its natural heavy fermion explanation in twisted bilayer and trilayer graphene. Preprint at http://arxiv.org/abs/2402.14057 (2024).
Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 085109 (2019).
Lei, C., Linhart, L., Qin, W., Libisch, F. & MacDonald, A. H. Mirror symmetry breaking and lateral stacking shifts in twisted trilayer graphene. Phys. Rev. B 104, 035139 (2021).
Carr, S. et al. Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. Nano Lett. 20, 3030–3038 (2020).
Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).
Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).
Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).
Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).
Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).
Jiao, L. et al. Magnetic and defect probes of the SmB6 surface state. Sci. Adv. 4, eaau4886 (2018).
Yee, M. M. et al. Imaging the Kondo insulating gap on SmB6. Preprint at http://arxiv.org/abs/1308.1085 (2013).
Seiro, S. et al. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal. Nat Commun. 9, 3324 (2018).
Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046401 (2020).
Datta, A., Calderón, M. J., Camjayi, A. & Bascones, E. Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene. Nat. Commun. 14, 5036 (2023).
Rai, G. et al. Dynamical correlations and order in magic-angle twisted bilayer graphene. Phys. Rev. X 14, 031045 (2024).
Calderón, M. J., Camjayi, A., Datta, A. & Bascones, E. Cascades in transport and optical conductivity of twisted bilayer graphene. Phys. Rev. B 112, L041126 (2025).
Coleman, P. in Handbook of Magnetism and Advanced Magnetic Materials (eds Kronmüller, H. & Parkin, S.) (Wiley, 2007).
Kwan, Y. H. et al. Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene. Phys. Rev. X 11, 041063 (2021).
Herzog-Arbeitman, J. et al. Heavy fermions as an efficient representation of atomistic strain and relaxation in twisted bilayer graphene. Preprint at http://arxiv.org/abs/2405.13880 (2025).
Herzog-Arbeitman, J. et al. Kekulé spiral order from strained topological heavy fermions. Phys. Rev. B 112, 125129 (2025).
Bagchi, M. et al. Spin-polarized scanning tunneling microscopy measurements of an Anderson impurity. Phys. Rev. Lett. 133, 246701 (2024).
Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).
Wang, X. & Vafek, O. Theory of correlated Chern insulators in twisted bilayer graphene. Phys. Rev. X 14, 021042 (2024).
Deutscher, G. Andreev–Saint-James reflections: a probe of cuprate superconductors. Rev. Mod. Phys. 77, 109–135 (2005).
Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).
Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).
Craig, I. M. et al. Local atomic stacking and symmetry in twisted graphene trilayers. Nat. Mater. 23, 323–330 (2024).
Yu, G., Li, Y., Motoyama, E. M. & Greven, M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nat. Phys. 5, 873–875 (2009).
Zhou, Z. et al. Double-dome unconventional superconductivity in twisted trilayer graphene. Preprint at http://arxiv.org/abs/2404.09909 (2024).
Mukherjee, A. et al. Superconducting magic-angle twisted trilayer graphene with competing magnetic order and moiré inhomogeneities. Nat. Mater. 24, 1400–1406 (2025).
Banerjee, A. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature 638, 93–98 (2025).
Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).
Tanaka, M. et al. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature 638, 99–105 (2025).
Park, J. M., Sun, S., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Experimental evidence for nodal superconducting gap in moiré graphene. Science 391, 79–83 (2025).
Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).
Choi, Y. et al. Interaction-driven band flattening and correlated phases in twisted bilayer graphene. Nat. Phys. 17, 1375–1381 (2021).
Lake, E., Patri, A. S. & Senthil, T. Pairing symmetry of twisted bilayer graphene: a phenomenological synthesis. Phys. Rev. B 106, 104506 (2022).
Lewandowski, C., Lantagne-Hurtubise, É., Thomson, A., Nadj-Perge, S. & Alicea, J. Andreev reflection spectroscopy in strongly paired superconductors. Phys. Rev. B 107, L020502 (2023).
Sainz-Cruz, H., Pantaleón, P. A., Phong, V. T., Jimeno-Pozo, A. & Guinea, F. Junctions and superconducting symmetry in twisted bilayer graphene. Phys. Rev. Lett. 131, 016003 (2023).
Sukhachov, P. O., Von Oppen, F. & Glazman, L. I. Andreev reflection in scanning tunneling spectroscopy of unconventional superconductors. Phys. Rev. Lett. 130, 216002 (2023).
Biswas, S., Suman, S., Randeria, M. & Sensarma, R. Andreev versus tunneling spectroscopy of unconventional flat-band superconductors. Proc. Natl Acad. Sci. 122, e2509881122 (2025).
Nagaoka, K., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).
Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005).
Zhou, G.-D., Wang, Y.-J., Tong, N. & Song, Z.-D. Kondo phase in twisted bilayer graphene. Phys. Rev. B 109, 045419 (2024).
Kim, H. Raw data: resolving intervalley gaps and many-body resonances in moire superconductor. Zenodo https://doi.org/10.5281/zenodo.17884628 (2025).
Călugăru D. et al. Obtaining the spectral function of moiré graphene heavy-fermions using iterative perturbation theory. Preprint at https://arxiv.org/abs/2509.18256 (2025).

