Thursday, February 5, 2026
No menu items!
HomeNatureResolving intervalley gaps and many-body resonances in moiré superconductors

Resolving intervalley gaps and many-body resonances in moiré superconductors

  • Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, Z.-D. & Bernevig, B. A. Magic-angle twisted bilayer graphene as a topological heavy fermion problem. Phys. Rev. Lett. 129, 047601 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, H. & Dai, X. Heavy-fermion representation for twisted bilayer graphene systems. Phys. Rev. B 106, 245129 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Suhl, H. Dispersion theory of the Kondo effect. Phys. Rev. 138, A515–A523 (1965).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Abrikosov, A. A. Electron scattering on magnetic impurities in metals and anomalous resistivity effects. Phys. Phys. Fiz. 2, 5–20 (1965).

    MathSciNet 
    CAS 

    Google Scholar
     

  • Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Merino, R. L. et al. Interplay between light and heavy electron bands in magic-angle twisted bilayer graphene. Nat. Phys. 21, 1078–1084 (2025).

  • Batlle-Porro, S. et al. Cryo-near-field photovoltage microscopy of heavy-fermion twisted symmetric trilayer graphene. Preprint at http://arxiv.org/abs/2402.12296 (2024).

  • Ghosh, A. et al. Thermopower probes of emergent local moments in magic-angle twisted bilayer graphene. Nat. Phys. 21, 732–739 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Călugăru, D. et al. The thermoelectric effect and its natural heavy fermion explanation in twisted bilayer and trilayer graphene. Preprint at http://arxiv.org/abs/2402.14057 (2024).

  • Khalaf, E., Kruchkov, A. J., Tarnopolsky, G. & Vishwanath, A. Magic angle hierarchy in twisted graphene multilayers. Phys. Rev. B 100, 085109 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lei, C., Linhart, L., Qin, W., Libisch, F. & MacDonald, A. H. Mirror symmetry breaking and lateral stacking shifts in twisted trilayer graphene. Phys. Rev. B 104, 035139 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carr, S. et al. Ultraheavy and ultrarelativistic Dirac quasiparticles in sandwiched graphenes. Nano Lett. 20, 3030–3038 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, D. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198–202 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kerelsky, A. et al. Maximized electron interactions at the magic angle in twisted bilayer graphene. Nature 572, 95–100 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Electronic correlations in twisted bilayer graphene near the magic angle. Nat. Phys. 15, 1174–1180 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene. Nature 573, 91–95 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao, L. et al. Magnetic and defect probes of the SmB6 surface state. Sci. Adv. 4, eaau4886 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yee, M. M. et al. Imaging the Kondo insulating gap on SmB6. Preprint at http://arxiv.org/abs/1308.1085 (2013).

  • Seiro, S. et al. Evolution of the Kondo lattice and non-Fermi liquid excitations in a heavy-fermion metal. Nat Commun. 9, 3324 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. S. et al. Many-body resonance in a correlated topological kagome antiferromagnet. Phys. Rev. Lett. 125, 046401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Datta, A., Calderón, M. J., Camjayi, A. & Bascones, E. Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene. Nat. Commun. 14, 5036 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rai, G. et al. Dynamical correlations and order in magic-angle twisted bilayer graphene. Phys. Rev. X 14, 031045 (2024).

    CAS 

    Google Scholar
     

  • Calderón, M. J., Camjayi, A., Datta, A. & Bascones, E. Cascades in transport and optical conductivity of twisted bilayer graphene. Phys. Rev. B 112, L041126 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Coleman, P. in Handbook of Magnetism and Advanced Magnetic Materials (eds Kronmüller, H. & Parkin, S.) (Wiley, 2007).

  • Kwan, Y. H. et al. Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene. Phys. Rev. X 11, 041063 (2021).

    CAS 

    Google Scholar
     

  • Herzog-Arbeitman, J. et al. Heavy fermions as an efficient representation of atomistic strain and relaxation in twisted bilayer graphene. Preprint at http://arxiv.org/abs/2405.13880 (2025).

  • Herzog-Arbeitman, J. et al. Kekulé spiral order from strained topological heavy fermions. Phys. Rev. B 112, 125129 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bagchi, M. et al. Spin-polarized scanning tunneling microscopy measurements of an Anderson impurity. Phys. Rev. Lett. 133, 246701 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. Imaging inter-valley coherent order in magic-angle twisted trilayer graphene. Nature 623, 942–948 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. & Vafek, O. Theory of correlated Chern insulators in twisted bilayer graphene. Phys. Rev. X 14, 021042 (2024).

    CAS 

    Google Scholar
     

  • Deutscher, G. Andreev–Saint-James reflections: a probe of cuprate superconductors. Rev. Mod. Phys. 77, 109–135 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blonder, G. E., Tinkham, M. & Klapwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515–4532 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Craig, I. M. et al. Local atomic stacking and symmetry in twisted graphene trilayers. Nat. Mater. 23, 323–330 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, G., Li, Y., Motoyama, E. M. & Greven, M. A universal relationship between magnetic resonance and superconducting gap in unconventional superconductors. Nat. Phys. 5, 873–875 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Z. et al. Double-dome unconventional superconductivity in twisted trilayer graphene. Preprint at http://arxiv.org/abs/2404.09909 (2024).

  • Mukherjee, A. et al. Superconducting magic-angle twisted trilayer graphene with competing magnetic order and moiré inhomogeneities. Nat. Mater. 24, 1400–1406 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banerjee, A. et al. Superfluid stiffness of twisted trilayer graphene superconductors. Nature 638, 93–98 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka, M. et al. Superfluid stiffness of magic-angle twisted bilayer graphene. Nature 638, 99–105 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. M., Sun, S., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Experimental evidence for nodal superconducting gap in moiré graphene. Science 391, 79–83 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Correlation-driven topological phases in magic-angle twisted bilayer graphene. Nature 589, 536–541 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, Y. et al. Interaction-driven band flattening and correlated phases in twisted bilayer graphene. Nat. Phys. 17, 1375–1381 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lake, E., Patri, A. S. & Senthil, T. Pairing symmetry of twisted bilayer graphene: a phenomenological synthesis. Phys. Rev. B 106, 104506 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lewandowski, C., Lantagne-Hurtubise, É., Thomson, A., Nadj-Perge, S. & Alicea, J. Andreev reflection spectroscopy in strongly paired superconductors. Phys. Rev. B 107, L020502 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sainz-Cruz, H., Pantaleón, P. A., Phong, V. T., Jimeno-Pozo, A. & Guinea, F. Junctions and superconducting symmetry in twisted bilayer graphene. Phys. Rev. Lett. 131, 016003 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sukhachov, P. O., Von Oppen, F. & Glazman, L. I. Andreev reflection in scanning tunneling spectroscopy of unconventional superconductors. Phys. Rev. Lett. 130, 216002 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas, S., Suman, S., Randeria, M. & Sensarma, R. Andreev versus tunneling spectroscopy of unconventional flat-band superconductors. Proc. Natl Acad. Sci. 122, e2509881122 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagaoka, K., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarillo-Herrero, P. et al. Orbital Kondo effect in carbon nanotubes. Nature 434, 484–488 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, G.-D., Wang, Y.-J., Tong, N. & Song, Z.-D. Kondo phase in twisted bilayer graphene. Phys. Rev. B 109, 045419 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, H. Raw data: resolving intervalley gaps and many-body resonances in moire superconductor. Zenodo https://doi.org/10.5281/zenodo.17884628 (2025).

  • Călugăru D. et al. Obtaining the spectral function of moiré graphene heavy-fermions using iterative perturbation theory. Preprint at https://arxiv.org/abs/2509.18256 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments