Thursday, February 5, 2026
No menu items!
HomeNatureDiscovery Learning predicts battery cycle life from minimal experiments

Discovery Learning predicts battery cycle life from minimal experiments

  • Figgener, J. et al. Multi-year field measurements of home storage systems and their use in capacity estimation. Nat. Energy 9, 1438–1447 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Degen, F., Winter, M., Bendig, D. & Tübke, J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 8, 1284–1295 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Severson, K. A. et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4, 383–391 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578, 397–402 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Settles, B. Active Learning Literature Survey. University of Wisconsin–Madison https://minds.wisconsin.edu/handle/1793/60660 (2009).

  • Yu, R. & Wang, R. Learning dynamical systems from data: an introduction to physics-guided deep learning. Proc. Natl Acad. Sci. 121, e2311808121 (2024).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xian, Y., Lampert, C. H., Schiele, B. & Akata, Z. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans Pattern Anal. Mach. Intell. 41, 2251–2265 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S. et al. External Li supply reshapes Li deficiency and lifetime limit of batteries. Nature 638, 676–683 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lam, V. N. et al. A decade of insights: delving into calendar aging trends and implications. Joule 9, 101796 (2025).

    Article 

    Google Scholar
     

  • Zhu, Y., Gu, X., Liu, K., Zhao, W. & Shang, Y. Rapid test and assessment of lithium-ion battery cycle life based on transfer learning. IEEE Trans. Transp. Electrification 10, 9133–9143 (2024).

    Article 

    Google Scholar
     

  • Edge, J. S. et al. Lithium ion battery degradation: what you need to know. Phys. Chem. Chem. Phys. 23, 8200–8221 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. et al. Battery lifetime prediction across diverse ageing conditions with inter-cell deep learning. Nat. Mach. Intell. 7, 270–277 (2025).

    Article 

    Google Scholar
     

  • Guo, N. et al. Semi-supervised learning for explainable few-shot battery lifetime prediction. Joule 8, 1820–1836 (2024).

    Article 

    Google Scholar
     

  • Aykol, M., Herring, P. & Anapolsky, A. Machine learning for continuous innovation in battery technologies. Nat. Rev. Mater. 5, 725–727 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Ward, L. et al. Principles of the Battery Data Genome. Joule 6, 2253–2271 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruner, J. S. The act of discovery. Harvard Educ. Rev. 31, 21–32 (1961).


    Google Scholar
     

  • Preger, Y. et al. Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J. Electrochem. Soc. 167, 120532 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lain, M. J., Brandon, J. & Kendrick, E. Design strategies for high power vs. high energy lithium ion cells. Batteries 5, 64 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Trad, K. Lifecycle ageing tests on commercial 18650 Li ion cell @ 25 °C and 45 °C. 4TU. ResearchData https://doi.org/10.4121/13739296.v1 (2021).

  • Heenan, T. M. M. et al. An advanced microstructural and electrochemical datasheet on 18650 Li-ion batteries with nickel-rich NMC811 cathodes and graphite-silicon anodes. J. Electrochem. Soc. 167, 140530 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, J. et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nat. Commun. 13, 2261 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wildfeuer, L. et al. Experimental degradation study of a commercial lithium-ion battery. J. Power Sources 560, 232498 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bills, A. et al. A battery dataset for electric vertical takeoff and landing aircraft. Sci. Data 10, 344 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X.-G., Liu, T. & Wang, C.-Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6, 176–185 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, J.-H. et al. Kosmotropic aqueous processing solution for green lithium battery cathode manufacturing. Nat. Commun 16, 1686 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ko, S. et al. Rapid safety screening realized by accelerating rate calorimetry with lab-scale small batteries. Nat. Energy 10, 707–714 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Wang, C.-Y. et al. Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J., Che, Y., Teodorescu, R., Song, Z. & Hu, X. Energy storage management in electric vehicles. Nat. Rev. Clean Technol. 1, 161–175 (2025).

    Article 

    Google Scholar
     

  • Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angello, N. H. et al. Closed-loop transfer enables artificial intelligence to yield chemical knowledge. Nature 633, 351–358 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cranmer, K., Brehmer, J. & Louppe, G. The frontier of simulation-based inference. Proc. Natl Acad. Sci. 117, 30055–30062 (2020).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brehmer, J. Simulation-based inference in particle physics. Nat. Rev. Phys. 3, 305–305 (2021).

    Article 

    Google Scholar
     

  • Durkan, C., Bekasov, A., Murray, I. & Papamakarios, G. Neural spline flows. In Proc. Advances in Neural Information Processing Systems 32 (Curran Associates, 2019).

  • Tejero-Cantero, A. et al. sbi: a toolkit for simulation-based inference. J. Open Source Softw. 5, 2505 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Sulzer, V., Marquis, S. G., Timms, R., Robinson, M. & Chapman, S. J. Python battery mathematical modelling (PyBaMM). J. Open Res. Softw. 9, 14 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Lake, B. M. & Baroni, M. Human-like systematic generalization through a meta-learning neural network. Nature 623, 115–121 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenberg, D., Nonnenmacher, M. & Macke, J. Automatic posterior transformation for likelihood-free inference. In Proc. 36th International Conference on Machine Learning 2404–2414 (PMLR, 2019).

  • Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B Stat. Methodol. 67, 301–320 (2005).

    Article 
    MathSciNet 

    Google Scholar
     

  • Awad, M. & Khanna, R. in Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers (eds Awad, M. & Khanna, R.) 67–80 (Apress, 2015).

  • Pedregosa, F. et al. scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar
     

  • Schulz, E., Speekenbrink, M. & Krause, A. A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 1–16 (2018).

    Article 
    MathSciNet 

    Google Scholar
     

  • Zhang, J. et al. Discovery Learning predicts battery cycle life from minimal experiments. Zenodo https://doi.org/10.5281/zenodo.17654407 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments