Figgener, J. et al. Multi-year field measurements of home storage systems and their use in capacity estimation. Nat. Energy 9, 1438–1447 (2024).
Degen, F., Winter, M., Bendig, D. & Tübke, J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy 8, 1284–1295 (2023).
Severson, K. A. et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4, 383–391 (2019).
Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578, 397–402 (2020).
Settles, B. Active Learning Literature Survey. University of Wisconsin–Madison https://minds.wisconsin.edu/handle/1793/60660 (2009).
Yu, R. & Wang, R. Learning dynamical systems from data: an introduction to physics-guided deep learning. Proc. Natl Acad. Sci. 121, e2311808121 (2024).
Xian, Y., Lampert, C. H., Schiele, B. & Akata, Z. Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans Pattern Anal. Mach. Intell. 41, 2251–2265 (2019).
Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).
Chen, S. et al. External Li supply reshapes Li deficiency and lifetime limit of batteries. Nature 638, 676–683 (2025).
Lam, V. N. et al. A decade of insights: delving into calendar aging trends and implications. Joule 9, 101796 (2025).
Zhu, Y., Gu, X., Liu, K., Zhao, W. & Shang, Y. Rapid test and assessment of lithium-ion battery cycle life based on transfer learning. IEEE Trans. Transp. Electrification 10, 9133–9143 (2024).
Edge, J. S. et al. Lithium ion battery degradation: what you need to know. Phys. Chem. Chem. Phys. 23, 8200–8221 (2021).
Zhang, H. et al. Battery lifetime prediction across diverse ageing conditions with inter-cell deep learning. Nat. Mach. Intell. 7, 270–277 (2025).
Guo, N. et al. Semi-supervised learning for explainable few-shot battery lifetime prediction. Joule 8, 1820–1836 (2024).
Aykol, M., Herring, P. & Anapolsky, A. Machine learning for continuous innovation in battery technologies. Nat. Rev. Mater. 5, 725–727 (2020).
Ward, L. et al. Principles of the Battery Data Genome. Joule 6, 2253–2271 (2022).
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Bruner, J. S. The act of discovery. Harvard Educ. Rev. 31, 21–32 (1961).
Preger, Y. et al. Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J. Electrochem. Soc. 167, 120532 (2020).
Lain, M. J., Brandon, J. & Kendrick, E. Design strategies for high power vs. high energy lithium ion cells. Batteries 5, 64 (2019).
Trad, K. Lifecycle ageing tests on commercial 18650 Li ion cell @ 25 °C and 45 °C. 4TU. ResearchData https://doi.org/10.4121/13739296.v1 (2021).
Heenan, T. M. M. et al. An advanced microstructural and electrochemical datasheet on 18650 Li-ion batteries with nickel-rich NMC811 cathodes and graphite-silicon anodes. J. Electrochem. Soc. 167, 140530 (2020).
Zhu, J. et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nat. Commun. 13, 2261 (2022).
Wildfeuer, L. et al. Experimental degradation study of a commercial lithium-ion battery. J. Power Sources 560, 232498 (2023).
Bills, A. et al. A battery dataset for electric vertical takeoff and landing aircraft. Sci. Data 10, 344 (2023).
Yang, X.-G., Liu, T. & Wang, C.-Y. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nat. Energy 6, 176–185 (2021).
Kim, J.-H. et al. Kosmotropic aqueous processing solution for green lithium battery cathode manufacturing. Nat. Commun 16, 1686 (2025).
Ko, S. et al. Rapid safety screening realized by accelerating rate calorimetry with lab-scale small batteries. Nat. Energy 10, 707–714 (2025).
Wang, C.-Y. et al. Fast charging of energy-dense lithium-ion batteries. Nature 611, 485–490 (2022).
Zhang, J., Che, Y., Teodorescu, R., Song, Z. & Hu, X. Energy storage management in electric vehicles. Nat. Rev. Clean Technol. 1, 161–175 (2025).
Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).
Angello, N. H. et al. Closed-loop transfer enables artificial intelligence to yield chemical knowledge. Nature 633, 351–358 (2024).
Cranmer, K., Brehmer, J. & Louppe, G. The frontier of simulation-based inference. Proc. Natl Acad. Sci. 117, 30055–30062 (2020).
Brehmer, J. Simulation-based inference in particle physics. Nat. Rev. Phys. 3, 305–305 (2021).
Durkan, C., Bekasov, A., Murray, I. & Papamakarios, G. Neural spline flows. In Proc. Advances in Neural Information Processing Systems 32 (Curran Associates, 2019).
Tejero-Cantero, A. et al. sbi: a toolkit for simulation-based inference. J. Open Source Softw. 5, 2505 (2020).
Sulzer, V., Marquis, S. G., Timms, R., Robinson, M. & Chapman, S. J. Python battery mathematical modelling (PyBaMM). J. Open Res. Softw. 9, 14 (2021).
Lake, B. M. & Baroni, M. Human-like systematic generalization through a meta-learning neural network. Nature 623, 115–121 (2023).
Greenberg, D., Nonnenmacher, M. & Macke, J. Automatic posterior transformation for likelihood-free inference. In Proc. 36th International Conference on Machine Learning 2404–2414 (PMLR, 2019).
Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B Stat. Methodol. 67, 301–320 (2005).
Awad, M. & Khanna, R. in Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers (eds Awad, M. & Khanna, R.) 67–80 (Apress, 2015).
Pedregosa, F. et al. scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Schulz, E., Speekenbrink, M. & Krause, A. A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions. J. Math. Psychol. 85, 1–16 (2018).
Zhang, J. et al. Discovery Learning predicts battery cycle life from minimal experiments. Zenodo https://doi.org/10.5281/zenodo.17654407 (2025).

