Saturday, January 31, 2026
No menu items!
HomeNaturePesticide residues alter taxonomic and functional biodiversity in soils

Pesticide residues alter taxonomic and functional biodiversity in soils

  • Vieira, D. et al. Pesticides Residues in European Agricultural Soils – Results from LUCAS 2018 Soil Module (European Union, 2023).

  • Riedo, J. et al. Concerted evaluation of pesticides in soils of extensive grassland sites and organic and conventional vegetable fields facilitates the identification of major input processes. Environ. Sci. Technol. 56, 13686–13695 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y.-R. et al. Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide. Nat. Commun. 14, 1706 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C.-N. et al. Effects of pesticide residues on bacterial community diversity and structure in typical greenhouse soils with increasing cultivation years in Northern China. Sci. Total Environ. 710, 136321 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panico, S. C. et al. Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates. Environ. Pollut. 305, 119290 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edlinger, A. et al. Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts. Nat. Ecol. Evol. 6, 1145–1154 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walder, F. et al. Soil microbiome signatures are associated with pesticide residues in arable landscapes. Soil Biol. Biochem. 174, 108830 (2022).

    Article 
    CAS 

    Google Scholar
     

  • El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Secur. 20, 132–144 (2019).

    Article 

    Google Scholar
     

  • Anthony, M. A., Bender, S. F. & van der Heijden, M. G. Enumerating soil biodiversity. Proc. Natl Acad. Sci. USA 120, e2304663120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, F. H. & Maggi, F. Pesticide mixtures in soil: a global outlook. Environ. Res. Lett. 16, 044051 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Wauchope, R. D. et al. Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Manag. Sci. 58, 419–445 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallmann, C. A., Foppen, R. P., Van Turnhout, C. A., De Kroon, H. & Jongejans, E. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511, 341–343 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rigal, S. et al. Farmland practices are driving bird population decline across Europe. Proc. Natl Acad. Sci. USA 120, e2216573120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholson, C. C. et al. Pesticide use negatively affects bumble bees across European landscapes. Nature 628, 355–358 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Henry, M. et al. A common pesticide decreases foraging success and survival in honey bees. Science 336, 348–350 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brühl, C. A. et al. Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep. 11, 24144 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maggi, F., Tang, F. H. & Tubiello, F. N. Agricultural pesticide land budget and river discharge to oceans. Nature 620, 1013–1017 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes. ISME J. 16, 1397–1408 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beaumelle, L. et al. Pesticide effects on soil fauna communities—a meta-analysis. J. Appl. Ecol. 60, 1239–1253 (2023).

    Article 

    Google Scholar
     

  • Pelosi, C., Barot, S., Capowiez, Y., Hedde, M. & Vandenbulcke, F. Pesticides and earthworms. Agron. Sustain. Dev. 34, 199–228 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Riedo, J. et al. Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past?. Environ. Sci. Tech. 55, 2919–2928 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Rivera-Becerril, F. et al. Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Sci. Total Environ. 577, 84–93 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ke, M. et al. Development of a machine-learning model to identify the impacts of pesticides characteristics on soil microbial communities from high-throughput sequencing data. Environ. Microbiol. 24, 5561–5573 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gunstone, T., Cornelisse, T., Klein, K., Dubey, A. & Donley, N. Pesticides and soil invertebrates: a hazard assessment. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2021.643847 (2021).

    Article 

    Google Scholar
     

  • Tejada, M., García, C., Hernández, T. & Gómez, I. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide. Arch. Environ. Contamin. Toxicol. 69, 8–19 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Franco, A. et al. Evaluation of the ecological risk of pesticides residues from the European LUCAS soil monitoring 2018 survey. Integr. Environ. Assess. Manag. 20, 1639–1653 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • EFSA Panel, C. et al. Scientific opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA Journal 15, e04690 (2017).


    Google Scholar
     

  • Riedo, J., Rillig, M. C. & Walder, F. Beyond dosage: the need for more realistic research scenarios to understand pesticide impacts on agricultural soils. J. Agric. Food Chem. 73, 10093–10100 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karpouzas, D. G., Vryzas, Z. & Martin-Laurent, F. Pesticide soil microbial toxicity: setting the scene for a new pesticide risk assessment for soil microorganisms (IUPAC Technical Report). Pure Appl. Chem. 94, 1161–1194 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Storck, V., Karpouzas, D. G. & Martin-Laurent, F. Towards a better pesticide policy for the European Union. Sci. Total Environ. 575, 1027–1033 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Silva, V. et al. Pesticide residues in European agricultural soils–a hidden reality unfolded. Sci. Total Environ. 653, 1532–1545 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Active Substances, Safeners and Synergists (European Commission, accessed 17 October 2025); https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances.

  • Baćmaga, M., Wyszkowska, J. & Kucharski, J. The effect of the Falcon 460 EC fungicide on soil microbial communities, enzyme activities and plant growth. Ecotoxicology 25, 1575–1587 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, H. et al. Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. J. Hazard. Mater. 405, 124208 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, F. M. & van Der Heijden, M. G. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. New Phytol. 242, 1486–1506 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Trap, J., Bonkowski, M., Plassard, C., Villenave, C. & Blanchart, E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil 398, 1–24 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sim, J. X. et al. Impact of twenty pesticides on soil carbon microbial functions and community composition. Chemosphere 307, 135820 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staley, Z. R., Harwood, V. J. & Rohr, J. R. A synthesis of the effects of pesticides on microbial persistence in aquatic ecosystems. Crit. Rev. Toxicol. 45, 813–836 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ni, B. et al. Increasing pesticide diversity impairs soil microbial functions. Proc. Natl Acad. Sci. USA 122, e2419917122 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romero, F., Jiao, S. & van der Heijden, M. G. Impact of microbial diversity and pesticide application on plant growth, litter decomposition and carbon substrate use. Soil Biol. Biochem. 208, 109866 (2025).

    Article 
    CAS 

    Google Scholar
     

  • PLAN/2023/1497 RR – Rev. 1 (European Commission, 2024).

  • Karas, P. et al. Assessment of the impact of three pesticides on microbial dynamics and functions in a lab-to-field experimental approach. Sci. Total Environ. 637, 636–646 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21, 973–985 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adriaanse, P. I., Buddendorf, W. B., Holterman, H. J. & ter Horst, M. M. Supporting the development of exposure assessment scenarios for non-target terrestrial organisms to plant protection products: development of exposure assessment goals. EFSA Support. Publ. 19, 7661E (2022).


    Google Scholar
     

  • Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A. & Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: a review. Eur. J. Soil Sci. 69, 140–153 (2018).

    Article 

    Google Scholar
     

  • Orgiazzi, A. et al. LUCAS Soil Biodiversity and LUCAS Soil Pesticides, new tools for research and policy development. Eur. J. Soil Sci. 73, e13299 (2022).

    Article 

    Google Scholar
     

  • Pihlström, T. et al. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed. Sante 11813, 21–22 (2017).


    Google Scholar
     

  • Sabzevari, S. & Hofman, J. A worldwide review of currently used pesticides’ monitoring in agricultural soils. Sci. Total Environ. 812, 152344 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Geissen, V. et al. Cocktails of pesticide residues in conventional and organic farming systems in Europe–legacy of the past and turning point for the future. Environ. Pollut. 278, 116827 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22, 1050–1064 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Forouzesh, A., Zand, E., Soufizadeh, S. & Samadi Foroushani, S. Classification of herbicides according to chemical family for weed resistance management strategies—an update. Weed Res. 55, 334–358 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hermann, D. & Stenzel, K. FRAC mode-of-action classification and resistance risk of fungicides. Modern Crop Protect. Compound. 2, 589–608 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sparks, T. C. & Nauen, R. IRAC: mode of action classification and insecticide resistance management. Pesticide Biochem. Physiol. 121, 122–128 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Labouyrie, M. et al. Patterns in soil microbial diversity across Europe. Nat. Commun. 14, 3311 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Köninger, J. et al. Ecosystem type drives soil eukaryotic diversity and composition in Europe. Glob. Chang. Ecol. 29, 5706–5719 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Bahram, M. Intensive land use enhances soil ammonia-oxidising archaea at a continental scale. Soil Biol. Biochem. 213, 110024 (2026).

    Article 
    CAS 

    Google Scholar
     

  • Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: gap-analysis and recommendations for future work. Sci. Total Environ. 678, 499–524 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q., Wang, W., Liu, L., Tang, S. & Yang, Y. Temporal and spatial dynamics of rotifer communities in the Pearl River Delta (China) with emphasis on DNA metabarcoding versus morphology to assess rotifer diversity. Hydrobiologia 851, 2999–3012 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Topstad, L., Guidetti, R., Majaneva, M. & Ekrem, T. Multi-marker DNA metabarcoding reflects tardigrade diversity in different habitats. Genome 64, 217–231 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beule, L. & Karlovsky, P. Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities. PeerJ 8, e9593 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C., Cui, Y., Li, X. & Yao, M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 97, fiaa255 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).

    Article 

    Google Scholar
     

  • van den Hoogen, J. et al. A global database of soil nematode abundance and functional group composition. Sci. Data 7, 103 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazel, F. et al. Soil protist function varies with elevation in the Swiss Alps. Environ. Microbiol. 24, 1689–1702 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferris, H., Bongers, T. & de Goede, R. G. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18, 13–29 (2001).

    Article 

    Google Scholar
     

  • Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clum, A. et al. DOE JGI metagenome workflow. mSystems 6, e00804-00820 (2021).

    Article 

    Google Scholar
     

  • Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 

    Google Scholar
     

  • Domene, X. et al. Applying a GLM-based approach to model the influence of soil properties on the toxicity of phenmedipham to Folsomia candida. J. Soils Sediments 12, 888–899 (2012).

    Article 

    Google Scholar
     

  • Obregon, D., Guerrero, O. R., Stashenko, E. & Poveda, K. Natural habitat partially mitigates negative pesticide effects on tropical pollinator communities. Glob. Ecol. Conserv. 28, e01668 (2021).


    Google Scholar
     

  • Szöcs, E. et al. Analysing chemical-induced changes in macroinvertebrate communities in aquatic mesocosm experiments: a comparison of methods. Ecotoxicology 24, 760–769 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R packag version 020 cran.r-project.org/web/packages/DHARMa (2018).

  • Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage publications, 2018).

  • Ribeiro, P. J. Jr, Diggle, P. J. The geoR package. R News 1, 14–18 (2007).


    Google Scholar
     

  • Grömping, U. Variable importance in regression models. WIREs Comput. Stat. 7, 137–152 (2015).

    Article 
    MathSciNet 

    Google Scholar
     

  • Legendre, P. & Legendre, L. in Numerical Ecology Vol. 24, 3rd edn Ch. 10.3 (Elsevier, 2012).

  • Oksanen, J. Vegan: community ecology package. R package version 2.5.7 http://vegan.r-forge.r-project.org/ (2010).

  • R Core Team. R: A Language and Environment for Statistical Computing. www.R-project.org/ (R Foundation for Statistical Computing, 2020).

  • Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC (European Commission, 2002).

  • RELATED ARTICLES

    Most Popular

    Recent Comments