Friday, January 30, 2026
No menu items!
HomeNatureVacuum ultraviolet second-harmonic generation in NH4B4O6F crystal

Vacuum ultraviolet second-harmonic generation in NH4B4O6F crystal

  • Eaton, D. F. Nonlinear optical materials. Science 253, 281–287 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meng, J. Q. et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 373, 322–324 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Cyranoski, D. China’s crystal cache. Nature 457, 953–955 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weinert, T. et al. Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365, 61–65 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Samson, J. A. & Ederer, D. L. Vacuum Ultraviolet Spectroscopy (Academic Press, 2000).

  • Basting, D. & Marowsky, G. Excimer Laser Technology (Springer, 2005).

  • O’Shea, P. G. & Freund, H. P. Free-electron lasers: status and applications. Science 292, 1853–1858 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).

    Article 
    ADS 

    Google Scholar
     

  • Bloembergen, N. Nonlinear Optics (World Scientific, 1996).

  • Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  • Eimerl, D. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics 72, 95–139 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, C. T., Wu, B. C., Jiang, A. D. & You, G. M. A new-type ultraviolet SHG crystal β-BaB2O4. Sci. Sin. B 18, 235–243 (1985).


    Google Scholar
     

  • Chen, C. T. et al. New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 6, 616–621 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mori, Y., Kuroda, I., Nakajima, S., Sasaki, T. & Nakai, S. New nonlinear optical crystal: cesium lithium borate. Appl. Phys. Lett. 67, 1818–1820 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mirov, S. B., Fedorov, V. V., Boczar, B., Frost, R. & Pryor, B. All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO. Opt. Commun. 198, 403–406 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z. T. et al. High-power, narrow linewidth solid-state deep ultraviolet laser generation at 193 nm by frequency mixing in LBO crystals. Adv. Photonics Nexus 3, 026012 (2024).

    Article 

    Google Scholar
     

  • Trabs, P., Noack, F., Aleksandrovsky, A. S., Zaitsev, A. I. & Petrov, V. Generation of coherent vacuum UV radiation in randomly quasi-phase-matched strontium tetraborate. In Proc. 2015 Conference on Lasers and Electro-Optics (CLEO) https://doi.org/10.1364/CLEO_SI.2015.STh3H.2 (IEEE, 2015).

  • Wu, B. C., Tang, D. Y., Ye, N. & Chen, C. T. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 5, 105–109 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dai, S. B. et al. 2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF. Laser Phys. Lett. 13, 035401 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Chen, C. T. et al. Nonlinear Optical Borate Crystals: Principles and Applications (Wiley, 2012).

  • Nikogosyan, D. N. Nonlinear Optical Crystals: A Complete Survey (Springer, 2009).

  • Zhang, B. B., Shi, G. Q., Yang, Z. H., Zhang, F. F. & Pan, S. L. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew. Chem. Int. Ed. 56, 3916–3919 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mutailipu, M., Zhang, M., Yang, Z. H. & Pan, S. L. Targeting the next generation of deep-ultraviolet nonlinear optical materials: expanding from borates to borate fluorides to fluorooxoborates. Acc. Chem. Res. 52, 791–801 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, G. Q. et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 139, 10645–10648 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. F. et al. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew. Chem. Int. Ed. 56, 14119–14123 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shepelev, Y. F., Bubnova, R. S., Filatov, S. K., Sennova, N. A. & Pilneva, N. A. LiB3O5 crystal structure at 20, 227 and 377 °C. J. Solid State Chem. 178, 2987–2997 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, C. T. et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2. J. Opt. Soc. Am. B 26, 1519–1525 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peng, G. et al. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials. Angew. Chem. Int. Ed. 57, 8968–8972 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. N. et al. Cs3[(BOP)2(B3O7)3]: a deep-ultraviolet nonlinear optical crystal designed by optimizing matching of cation and anion groups. J. Am. Chem. Soc. 145, 12691–12700 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, G. H. et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J. Am. Chem. Soc. 133, 20001–20007 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mutailipu, M. et al. Achieving the full-wavelength phase-matching for efficient nonlinear optical frequency conversion in C(NH2)3BF4. Nat. Photonics 17, 694–701 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, C. T., Wang, G. L., Wang, X. Y. & Xu, Z. Y. Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications. Appl. Phys. B 97, 9–25 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, R., Wang, L. R., Wang, X. Y., Wang, G. L. & Chen, C. T. Dispersion relations of refractive indices suitable for KBe2BO3F2 crystal deep-ultraviolet applications. Appl. Opt. 55, 10423–10426 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. J., Wang, F., Sun, L. X., Zheng, T. R. & Wang, F. R. Laser damage properties of LiB3O5 crystal surface under UV laser irradiation. Opt. Express 31, 30184–30193 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Berntsen, M. H., Gotberg, O. & Tjernberg, O. An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer. Rev. Sci. Instrum. 82, 095113 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, Y. C., Xiong, B., Bross, D. H., Ruscic, B. & Ng, C. Y. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH4): determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH4 and CH4+. Phys. Chem. Chem. Phys. 19, 9592–9605 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, W., Laurent, G., Ben-Itzhak, I. & Cocke, C. L. Identification of a previously unobserved dissociative ionization pathway in time-resolved photospectroscopy of the deuterium molecule. Phys. Rev. Lett. 114, 113001 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wen, N. et al. Generation of a 177.3 nm VUV laser with high pulse energy by a KBBF crystal. Laser Phys. Lett. 17, 105001 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, C. T., Wu, Y. C. & Li, R. K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int. Rev. Phys. Chem. 8, 65–91 (1989).

    Article 

    Google Scholar
     

  • Lei, B. H., Pan, S. L., Yang, Z. H., Cao, C. & Singh, D. J. Second harmonic generation susceptibilities from symmetry adapted Wannier functions. Phys. Rev. Lett. 125, 187402 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, F. M. et al. Covalently bonded fluorine optimizing deep-ultraviolet nonlinear optical performance of fluorooxoborates. Sci. Bull. 69, 1192–1196 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Technical Committee: ISO/TC 172/SC9. ICS: 31.260. Lasers and laser-related equipment — test methods for laser-induced damage threshold. Part 2: threshold determination. ISO 21254-2:2011. (International Organization for Standardization, 2011).

  • Leviton, D. B., Madison, T. J. & Petrone, P. III Simple refractometers for index measurements by minimum-deviation method from far ultraviolet to near infrared. Proc. SPIE 3425, 148–159 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Born, M. & Wolf, E. Principles of Optics 5th edn (Pergamon Press, 1975).

  • Maker, P., Terhune, R., Nisenoff, M. & Savage, C. Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 8, 21 (1962).

    Article 
    ADS 

    Google Scholar
     

  • Jerphagnon, J. & Kurtz, S. K. Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals. J. Appl. Phys. 41, 1667–1681 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, M. et al. Linear and nonlinear optical properties of K3B6O10Br single crystal: experiment and calculation. J. Phys. Chem. C 118, 11849–11856 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Caricato, M., Frisch, A., Hiscocks, J. & Frisch, M. J. Gaussian 09: IOps Reference (Gaussian, Inc., 2009).

  • Lu, T. & Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. F. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aversa, C. & Sipe, J. E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis. Phys. Rev. B 52, 14636 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, B. B. et al. Simulated pressure-induced blue-shift of phase-matching region and nonlinear optical mechanism for K3B6O10X (X = Cl, Br). Appl. Phys. Lett. 106, 031906 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Marzari, N. et al. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments