Eaton, D. F. Nonlinear optical materials. Science 253, 281–287 (1991).
Meng, J. Q. et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 373, 322–324 (1995).
Cyranoski, D. China’s crystal cache. Nature 457, 953–955 (2009).
Weinert, T. et al. Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science 365, 61–65 (2019).
Samson, J. A. & Ederer, D. L. Vacuum Ultraviolet Spectroscopy (Academic Press, 2000).
Basting, D. & Marowsky, G. Excimer Laser Technology (Springer, 2005).
O’Shea, P. G. & Freund, H. P. Free-electron lasers: status and applications. Science 292, 1853–1858 (2001).
Franken, P. A., Hill, A. E., Peters, C. W. & Weinreich, G. Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961).
Bloembergen, N. Nonlinear Optics (World Scientific, 1996).
Boyd, R. W. Nonlinear Optics (Academic Press, 2008).
Eimerl, D. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs. Ferroelectrics 72, 95–139 (1987).
Chen, C. T., Wu, B. C., Jiang, A. D. & You, G. M. A new-type ultraviolet SHG crystal β-BaB2O4. Sci. Sin. B 18, 235–243 (1985).
Chen, C. T. et al. New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 6, 616–621 (1989).
Mori, Y., Kuroda, I., Nakajima, S., Sasaki, T. & Nakai, S. New nonlinear optical crystal: cesium lithium borate. Appl. Phys. Lett. 67, 1818–1820 (1995).
Mirov, S. B., Fedorov, V. V., Boczar, B., Frost, R. & Pryor, B. All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO. Opt. Commun. 198, 403–406 (2001).
Zhang, Z. T. et al. High-power, narrow linewidth solid-state deep ultraviolet laser generation at 193 nm by frequency mixing in LBO crystals. Adv. Photonics Nexus 3, 026012 (2024).
Trabs, P., Noack, F., Aleksandrovsky, A. S., Zaitsev, A. I. & Petrov, V. Generation of coherent vacuum UV radiation in randomly quasi-phase-matched strontium tetraborate. In Proc. 2015 Conference on Lasers and Electro-Optics (CLEO) https://doi.org/10.1364/CLEO_SI.2015.STh3H.2 (IEEE, 2015).
Wu, B. C., Tang, D. Y., Ye, N. & Chen, C. T. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 5, 105–109 (1996).
Dai, S. B. et al. 2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF. Laser Phys. Lett. 13, 035401 (2016).
Chen, C. T. et al. Nonlinear Optical Borate Crystals: Principles and Applications (Wiley, 2012).
Nikogosyan, D. N. Nonlinear Optical Crystals: A Complete Survey (Springer, 2009).
Zhang, B. B., Shi, G. Q., Yang, Z. H., Zhang, F. F. & Pan, S. L. Fluorooxoborates: beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew. Chem. Int. Ed. 56, 3916–3919 (2017).
Mutailipu, M., Zhang, M., Yang, Z. H. & Pan, S. L. Targeting the next generation of deep-ultraviolet nonlinear optical materials: expanding from borates to borate fluorides to fluorooxoborates. Acc. Chem. Res. 52, 791–801 (2019).
Shi, G. Q. et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 139, 10645–10648 (2017).
Wang, X. F. et al. CsB4O6F: a congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units. Angew. Chem. Int. Ed. 56, 14119–14123 (2017).
Shepelev, Y. F., Bubnova, R. S., Filatov, S. K., Sennova, N. A. & Pilneva, N. A. LiB3O5 crystal structure at 20, 227 and 377 °C. J. Solid State Chem. 178, 2987–2997 (2005).
Chen, C. T. et al. Deep UV nonlinear optical crystal: RbBe2(BO3)F2. J. Opt. Soc. Am. B 26, 1519–1525 (2009).
Peng, G. et al. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials. Angew. Chem. Int. Ed. 57, 8968–8972 (2018).
Liu, H. N. et al. Cs3[(BOP)2(B3O7)3]: a deep-ultraviolet nonlinear optical crystal designed by optimizing matching of cation and anion groups. J. Am. Chem. Soc. 145, 12691–12700 (2023).
Zou, G. H. et al. Alkaline-alkaline earth fluoride carbonate crystals ABCO3F (A = K, Rb, Cs; B = Ca, Sr, Ba) as nonlinear optical materials. J. Am. Chem. Soc. 133, 20001–20007 (2011).
Mutailipu, M. et al. Achieving the full-wavelength phase-matching for efficient nonlinear optical frequency conversion in C(NH2)3BF4. Nat. Photonics 17, 694–701 (2023).
Chen, C. T., Wang, G. L., Wang, X. Y. & Xu, Z. Y. Deep-UV nonlinear optical crystal KBe2BO3F2—discovery, growth, optical properties and applications. Appl. Phys. B 97, 9–25 (2009).
Li, R., Wang, L. R., Wang, X. Y., Wang, G. L. & Chen, C. T. Dispersion relations of refractive indices suitable for KBe2BO3F2 crystal deep-ultraviolet applications. Appl. Opt. 55, 10423–10426 (2016).
Liu, H. J., Wang, F., Sun, L. X., Zheng, T. R. & Wang, F. R. Laser damage properties of LiB3O5 crystal surface under UV laser irradiation. Opt. Express 31, 30184–30193 (2023).
Berntsen, M. H., Gotberg, O. & Tjernberg, O. An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer. Rev. Sci. Instrum. 82, 095113 (2011).
Chang, Y. C., Xiong, B., Bross, D. H., Ruscic, B. & Ng, C. Y. A vacuum ultraviolet laser pulsed field ionization-photoion study of methane (CH4): determination of the appearance energy of methylium from methane with unprecedented precision and the resulting impact on the bond dissociation energies of CH4 and CH4+. Phys. Chem. Chem. Phys. 19, 9592–9605 (2017).
Cao, W., Laurent, G., Ben-Itzhak, I. & Cocke, C. L. Identification of a previously unobserved dissociative ionization pathway in time-resolved photospectroscopy of the deuterium molecule. Phys. Rev. Lett. 114, 113001 (2015).
Wen, N. et al. Generation of a 177.3 nm VUV laser with high pulse energy by a KBBF crystal. Laser Phys. Lett. 17, 105001 (2020).
Chen, C. T., Wu, Y. C. & Li, R. K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int. Rev. Phys. Chem. 8, 65–91 (1989).
Lei, B. H., Pan, S. L., Yang, Z. H., Cao, C. & Singh, D. J. Second harmonic generation susceptibilities from symmetry adapted Wannier functions. Phys. Rev. Lett. 125, 187402 (2020).
Li, F. M. et al. Covalently bonded fluorine optimizing deep-ultraviolet nonlinear optical performance of fluorooxoborates. Sci. Bull. 69, 1192–1196 (2024).
Technical Committee: ISO/TC 172/SC9. ICS: 31.260. Lasers and laser-related equipment — test methods for laser-induced damage threshold. Part 2: threshold determination. ISO 21254-2:2011. (International Organization for Standardization, 2011).
Leviton, D. B., Madison, T. J. & Petrone, P. III Simple refractometers for index measurements by minimum-deviation method from far ultraviolet to near infrared. Proc. SPIE 3425, 148–159 (1998).
Born, M. & Wolf, E. Principles of Optics 5th edn (Pergamon Press, 1975).
Maker, P., Terhune, R., Nisenoff, M. & Savage, C. Effects of dispersion and focusing on the production of optical harmonics. Phys. Rev. Lett. 8, 21 (1962).
Jerphagnon, J. & Kurtz, S. K. Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals. J. Appl. Phys. 41, 1667–1681 (1970).
Zhang, M. et al. Linear and nonlinear optical properties of K3B6O10Br single crystal: experiment and calculation. J. Phys. Chem. C 118, 11849–11856 (2014).
Caricato, M., Frisch, A., Hiscocks, J. & Frisch, M. J. Gaussian 09: IOps Reference (Gaussian, Inc., 2009).
Lu, T. & Chen, F. W. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Kresse, G. & Furthmuller, J. F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Furthmuller, J. F. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Rappe, A. M., Rabe, K. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Pizzi, G. et al. Wannier90 as a community code: new features and applications. J. Phys. Condens. Matter 32, 165902 (2020).
Aversa, C. & Sipe, J. E. Nonlinear optical susceptibilities of semiconductors: results with a length-gauge analysis. Phys. Rev. B 52, 14636 (1995).
Zhang, B. B. et al. Simulated pressure-induced blue-shift of phase-matching region and nonlinear optical mechanism for K3B6O10X (X = Cl, Br). Appl. Phys. Lett. 106, 031906 (2015).
Marzari, N. et al. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

