McClure-Begley, T. D. & Roth, B. L. The promises and perils of psychedelic pharmacology for psychiatry. Nat. Rev. Drug Discov. 21, 463–473 (2022).
Armstrong, S. B. & Davis, A. K. Psychedelic research at a crossroads. Science 385, 1255 (2024).
Reardon, S. Psychedelic treatments are speeding towards approval—but no one knows how they work. Nature 623, 22–24 (2023).
Duan, W., Cao, D., Wang, S. & Cheng, J. Serotonin 2A receptor (5-HT2AR) agonists: psychedelics and non-hallucinogenic analogues as emerging antidepressants. Chem. Rev. 124, 124–163 (2024).
Siegel, J. S. et al. Psilocybin desynchronizes the human brain. Nature 632, 131–138 (2024).
Nichols, D. E. Psychedelics. Pharmacol. Rev. 68, 264–355 (2016).
Nichols, D. E., Johnson, M. W. & Nichols, C. D. Psychedelics as medicines: an emerging new paradigm. Clin. Pharmacol. Ther. 101, 209–219 (2017).
Chung, E. N. et al. Psychedelic control of neuroimmune interactions governing fear. Nature 641, 1276–1286 (2025).
Shao, L. X. et al. Psilocybin’s lasting action requires pyramidal cell types and 5-HT2A receptors. Nature 642, 411–420 (2025).
Muir, J. et al. Isolation of psychedelic-responsive neurons underlying anxiolytic behavioral states. Science 386, 802–810 (2024).
Ma, S. et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature 622, 802–809 (2023).
Kyzar, E. J., Nichols, C. D., Gainetdinov, R. R., Nichols, D. E. & Kalueff, A. V. Psychedelic drugs in biomedicine. Trends Pharmacol. Sci. 38, 992–1005 (2017).
Pottie, E. & Stove, C. P. In vitro assays for the functional characterization of (psychedelic) substances at the serotonin receptor 5-HT2A R. J. Neurochem. 162, 39–59 (2022).
Wallach, J. et al. Identification of 5-HT2A receptor signaling pathways associated with psychedelic potential. Nat. Commun. 14, 8221 (2023).
Cao, D. et al. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science 375, 403–411 (2022).
Gonzalez-Maeso, J. et al. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron 53, 439–452 (2007).
Kossatz, E. et al. G protein-specific mechanisms in the serotonin 5-HT2A receptor regulate psychosis-related effects and memory deficits. Nat. Commun. 15, 4307 (2024).
Muneta-Arrate, I., Diez-Alarcia, R., Horrillo, I. & Meana, J. J. Pimavanserin exhibits serotonin 5-HT2A receptor inverse agonism for Galphai1– and neutral antagonism for Galphaq/11-proteins in human brain cortex. Eur. Neuropsychopharmacol. 36, 83–89 (2020).
Garcia-Bea, A. et al. Serotonin 5-HT2A receptor expression and functionality in postmortem frontal cortex of subjects with schizophrenia: selective biased agonism via Galphai1-proteins. Eur. Neuropsychopharmacol. 29, 1453–1463 (2019).
Guo, L. et al. Structural basis of amine odorant perception by a mammal olfactory receptor. Nature 618, 193–200 (2023).
Kobayashi, K. et al. Class B1 GPCR activation by an intracellular agonist. Nature 618, 1085–1093 (2023).
Zhao, J. et al. Ligand efficacy modulates conformational dynamics of the micro-opioid receptor. Nature 629, 474–480 (2024).
Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).
Simon, M. I., Strathmann, M. P. & Gautam, N. Diversity of G proteins in signal transduction. Science 252, 802–808 (1991).
Gutkind, J. S. & Offermanns, S. A new Gq-initiated MAPK signaling pathway in the heart. Dev. Cell 16, 163–164 (2009).
Ogata, N., Kawaguchi, H., Chung, U. I., Roth, S. I. & Segre, G. V. Continuous activation of G alpha q in osteoblasts results in osteopenia through impaired osteoblast differentiation. J. Biol. Chem. 282, 35757–35764 (2007).
Oostland, M. et al. Distinct temporal expression of 5-HT1A and 5-HT2A receptors on cerebellar granule cells in mice. Cerebellum 13, 491–500 (2014).
Xu, C. et al. Specific pharmacological and Gi/o protein responses of some native GPCRs in neurons. Nat. Commun. 15, 1990 (2024).
Casey, A. B., Cui, M., Booth, R. G. & Canal, C. E. “Selective” serotonin 5-HT2A receptor antagonists. Biochem. Pharmacol. 200, 115028 (2022).
Gonzalez-Maeso, J. et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93–97 (2008).
Murat, S. et al. 5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling. Mol. Psychiatry 24, 1610–1626 (2019).
Mangmool, S. & Kurose, H. Gi/o protein-dependent and -independent actions of pertussis toxin (PTX). Toxins 3, 884–899 (2011).
Takasaki, J. et al. A novel Galphaq/11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 (2004).
Phaneuf, S. et al. Oxytocin-stimulated phosphoinositide hydrolysis in human myometrial cells: involvement of pertussis toxin-sensitive and -insensitive G-proteins. J. Endocrinol. 136, 497–509 (1993).
Warren, A. L. et al. Structural pharmacology and therapeutic potential of 5-methoxytryptamines. Nature 630, 237–246 (2024).
Cao, C. et al. Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD. Neuron 110, 3154–3167 (2022).
Gumpper, R. H. et al. The structural diversity of psychedelic drug actions revealed. Nat. Commun. 16, 2734 (2025).
Flock, T. et al. Universal allosteric mechanism for Galpha activation by GPCRs. Nature 524, 173–179 (2015).
Shearer, J., Castro, J. L., Lawson, A. D. G., MacCoss, M. & Taylor, R. D. Rings in clinical trials and drugs: present and future. J. Med. Chem. 65, 8699–8712 (2022).
Pottie, E. et al. Structure–activity assessment and in-depth analysis of biased agonism in a set of phenylalkylamine 5-HT2A receptor agonists. ACS Chem. Neurosci. 14, 2727–2742 (2023).
Marks, M. & Cohen, I. G. How should the FDA evaluate psychedelic medicine? N. Engl. J. Med. 389, 1733–1735 (2023).
Duan, J. et al. Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nat. Commun. 11, 4121 (2020).
Zhao, J. et al. Prospect of acromegaly therapy: molecular mechanism of clinical drugs octreotide and paltusotine. Nat. Commun. 14, 962 (2023).
Shang, P. et al. Structural and signaling mechanisms of TAAR1 enabled preferential agonist design. Cell 186, 5347–5362 (2023).
Wang, Y. et al. Neurons upregulate PD-L1 via IFN/STAT1/IRF1 to alleviate damage by CD8+ T cells in cerebral malaria. J. Neuroinflamm. 21, 119 (2024).
Feng, Y. et al. Mechanism of activation and biased signaling in complement receptor C5aR1. Cell Res. 33, 312–324 (2023).
Kim, K. et al. Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588 (2020).
DiBerto, J. F., Olsen, R. H. J. & Roth, B. L. TRUPATH: an open-source biosensor platform for interrogating the GPCR transducerome. Methods Mol. Biol. 2525, 185–195 (2022).
Cao, Y. et al. Unraveling allostery within the angiotensin II type 1 receptor for Gαq and β-arrestin coupling. Sci. Signal. 16, eadf2173 (2023).
Yao, H. et al. Dural tregs driven by astrocytic IL-33 mitigate depression through the EGFR signals in mPFC neurons. Cell Death Differ. 32, 926–943 (2025).
Zhang, X. et al. The role of CD38 in inflammation-induced depression-like behavior and the antidepressant effect of (R)-ketamine. Brain Behav. Immun. 115, 64–79 (2024).
Xu, Z. et al. Ligand recognition and G-protein coupling of trace amine receptor TAAR1. Nature 624, 672–681 (2023).
Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).
Scheres, S. H. Semi-automated selection of cryo-EM particles in RELION-1.3. J. Struct. Biol. 189, 114–122 (2015).
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J 478, 4169–4185 (2021).
Zhu, J. et al. A minority of final stacks yields superior amplitude in single-particle cryo-EM. Nat. Commun. 14, 7822 (2023).
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).
Krissinel, E. Enhanced fold recognition using efficient short fragment clustering. J. Mol. Biochem. 1, 76–85 (2012).
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
Quan, B. X. et al. An orally available Mpro inhibitor is effective against wild-type SARS-CoV-2 and variants including Omicron. Nat. Microbiol. 7, 716–725 (2022).
Vargas, M. V. et al. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science 379, 700–706 (2023).

