Friday, January 30, 2026
No menu items!
HomeNatureStructure and mechanism of the human bile acid transporter OSTα–OSTβ

Structure and mechanism of the human bile acid transporter OSTα–OSTβ

  • Chiang, J. Y. Bile acid metabolism and signaling. Compr. Physiol. 3, 1191–1212 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Aguiar Vallim, T. Q., Tarling, E. J. & Edwards, P. A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657–669 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, W., Seward, D. J., Li, L., Boyer, J. L. & Ballatori, N. Expression cloning of two genes that together mediate organic solute and steroid transport in the liver of a marine vertebrate. Proc. Natl Acad. Sci. USA 98, 9431–9436 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Seward, D. J., Koh, A. S., Boyer, J. L. & Ballatori, N. Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTα–OSTβ. J. Biol. Chem. 278, 27473–27482 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballatori, N., Christian, W. V., Wheeler, S. G. & Hammond, C. L. The heteromeric organic solute transporter, OSTα-OSTβ/SLC51: a transporter for steroid-derived molecules. Mol. Aspects Med. 34, 683–692 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dawson, P. A., Hubbert, M. L. & Rao, A. Getting the mOST from OST: role of organic solute transporter, OSTα-OSTβ, in bile acid and steroid metabolism. Biochim. Biophys. Acta 1801, 994–1004 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, E. et al. Organic solute transporter α deficiency: a disorder with cholestasis, liver fibrosis, and congenital diarrhea. Hepatology 71, 1879–1882 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Sultan, M. et al. Organic solute transporter-β (SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis. Hepatology 68, 590–598 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballatori, N. et al. OST α-OST β: a key membrane transporter of bile acids and conjugated steroids. Front. Biosci. 14, 2829–2844 (2009).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Beaudoin, J. J., Brouwer, K. L. R. & Malinen, M. M. Novel insights into the organic solute transporter α/β, OSTα/β: from the bench to the bedside. Pharmacol. Ther. 211, 107542 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dawson, P. A., Lan, T. & Rao, A. Bile acid transporters. J. Lipid Res. 50, 2340–2357 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghallab, A. et al. Enteronephrohepatic circulation of bile acids and therapeutic potential of systemic bile acid transporter inhibitors. J. Hepatol. 83, 1204–1217 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiang, J. Y. Bile acids: regulation of synthesis. J. Lipid Res. 50, 1955–1966 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballatori, N. et al. OSTα-OSTβ: a major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia. Hepatology 42, 1270–1279 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dawson, P. A. et al. The heteromeric organic solute transporter α–β, Ostα–Ostβ, is an ileal basolateral bile acid transporter. J. Biol. Chem. 280, 6960–6968 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ballatori, N., Fang, F., Christian, W. V., Li, N. & Hammond, C. L. Ostα–Ostβ is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G179–G186 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferrebee, C. B. et al. Organic solute transporter α–β protects ileal enterocytes from bile acid-induced injury. Cell. Mol. Gastroenterol. Hepatol. 5, 499–522 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boyer, J. L. et al. Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTα–OSTβ in cholestasis in humans and rodents. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G1124–G1130 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malinen, M. M., Ali, I., Bezencon, J., Beaudoin, J. J. & Brouwer, K. L. R. Organic solute transporter OSTα/β is overexpressed in nonalcoholic steatohepatitis and modulated by drugs associated with liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G597–G609 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Christian, W. V., Li, N., Hinkle, P. M. & Ballatori, N. β-Subunit of the Ostα–Ostβ organic solute transporter is required not only for heterodimerization and trafficking but also for function. J. Biol. Chem. 287, 21233–21243 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, F. et al. Neurosteroid transport by the organic solute transporter OSTα–OSTβ. J. Neurochem. 115, 220–233 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suga, T., Yamaguchi, H., Ogura, J. & Mano, N. Characterization of conjugated and unconjugated bile acid transport via human organic solute transporter α/β. Biochim. Biophys. Acta Biomembr. 1861, 1023–1029 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. The role of a basolateral transporter in rosuvastatin transport and its interplay with apical breast cancer resistance protein in polarized cell monolayer systems. Drug Metab. Dispos. 40, 2102–2108 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N., Cui, Z., Fang, F., Lee, J. Y. & Ballatori, N. Heterodimerization, trafficking and membrane topology of the two proteins, Ostα and Ostβ, that constitute the organic solute and steroid transporter. Biochem. J. 407, 363–372 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotzke, H. et al. The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat. Commun. 10, 4403 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Christian, W. V. & Hinkle, P. M. Global functions of extracellular, transmembrane and cytoplasmic domains of organic solute transporter β-subunit. Biochem. J. 474, 1981–1992 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chatzikyriakidou, Y., Ahn, D. H., Nji, E. & Drew, D. The GFP thermal shift assay for screening ligand and lipid interactions to solute carrier transporters. Nat. Protoc. 16, 5357–5376 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soroka, C. J., Xu, S., Mennone, A., Lam, P. & Boyer, J. L. N-glycosylation of the α subunit does not influence trafficking or functional activity of the human organic solute transporter α/β. BMC Cell Biol. 9, 57 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaye, H. et al. Structural basis of the activation of a metabotropic GABA receptor. Nature 584, 298–303 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Josephs, T. M. et al. Structure and dynamics of the CGRP receptor in apo and peptide-bound forms. Science 372, eabf7258 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goutam, K., Ielasi, F. S., Pardon, E., Steyaert, J. & Reyes, N. Structural basis of sodium-dependent bile salt uptake into the liver. Nature 606, 1015–1020 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Shan, Z. et al. Cryo-EM structures of human organic anion transporting polypeptide OATP1B1. Cell Res. 33, 940–951 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Structural basis of bile salt extrusion and small-molecule inhibition in human BSEP. Nat. Commun. 14, 7296 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Xu, S. et al. A novel di-leucine motif at the N-terminus of human organic solute transporter β is essential for protein association and membrane localization. PLoS One 11, e0158269 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. Characterization of a novel organic solute transporter homologue from Clonorchis sinensis. PLoS Negl. Trop. Dis. 12, e0006459 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taghon, G. J., Rowe, J. B., Kapolka, N. J. & Isom, D. G. Predictable cholesterol binding sites in GPCRs lack consensus motifs. Structure 29, 499–506 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malinen, M. M. et al. Novel in vitro method reveals drugs that inhibit organic solute transporter α/β (OSTα/β). Mol. Pharm. 16, 238–246 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, N. J., Iwata, S., Cameron, A. D. & Drew, D. Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature 478, 408–411 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ji, J. et al. Plant SWEET family of sugar transporters: structure, evolution and biological functions. Biomolecules 12, 205 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naes, S. M., Ab-Rahim, S., Mazlan, M. & Abdul Rahman, A. Equilibrative nucleoside transporter 2: properties and physiological roles. Biomed Res. Int. 2020, 5197626 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Latorraca, N. R. et al. Mechanism of substrate translocation in an alternating access transporter. Cell 169, 96–107 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, N. J. & Lee, S. Y. Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nat. Struct. Mol. Biol. 26, 599–606 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marin, J. J., Macias, R. I., Briz, O., Banales, J. M. & Monte, M. J. Bile acids in physiology, pathology and pharmacology. Curr. Drug Metab. 17, 4–29 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ticho, A. L. et al. S-acylation modulates the function of the apical sodium-dependent bile acid transporter in human cells. J. Biol. Chem. 295, 4488–4497 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ayewoh, E. N., Czuba, L. C., Nguyen, T. T. & Swaan, P. W. S-acylation status of bile acid transporter hASBT regulates its function, metabolic stability, membrane expression, and phosphorylation state. Biochim. Biophys. Acta Biomembr. 1863, 183510 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khelashvili, G. & Menon, A. K. Phospholipid scrambling by G protein-coupled receptors. Annu. Rev. Biophys. 51, 39–61 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frankenberg, T. et al. Regulation of the mouse organic solute transporter α–β, Ostα–Ostβ, by bile acids. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G912–G922 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, A. et al. The organic solute transporter α–β, Ostα–Ostβ, is essential for intestinal bile acid transport and homeostasis. Proc. Natl Acad. Sci. USA 105, 3891–3896 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Sakuragi, T. & Nagata, S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat. Rev. Mol. Cell Biol. 24, 576–596 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kalienkova, V. et al. Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM. eLife 8, e44364 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xia, Z. et al. Structural insights into glucose-6-phosphate recognition and hydrolysis by human G6PC1. Proc. Natl Acad. Sci. USA 122, e2418316122 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wu, D. et al. Transport and inhibition mechanisms of human VMAT2. Nature 626, 427–434 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dickson, C. J., Walker, R. C. & Gould, I. R. Lipid21: complex lipid membrane simulations with AMBER. J. Chem. Theory Comput. 18, 1726–1736 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J., Wang, W., Kollman, P. A. & Case, D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Jakalian, A., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Sousa da Silva, A. W. & Vranken, W. F. ACPYPE—AnteChamber PYthon Parser interfacE. BMC Res. Notes 5, 367 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barducci, A., Bussi, G. & Parrinello, M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 100, 020603 (2008).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beránek, J., Křenek, A. & Spiwok, V. Analysis of metadynamics simulations by metadynminer.py. Bioinformatics 40, btae614 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzalez-Aleman, R., Hernandez-Castillo, D., Caballero, J. & Montero-Cabrera, L. A. Quality threshold clustering of molecular dynamics: a word of caution. J. Chem. Inf. Model. 60, 467–472 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments