Thursday, January 29, 2026
No menu items!
HomeNatureObservation of a superfluid-to-insulator transition of bilayer excitons

Observation of a superfluid-to-insulator transition of bilayer excitons

  • Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Halperin, B. I. & Jain, J. K. Fractional Quantum Hall Effects: New Developments (World Scientific, 2020).

  • Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Andreev, A. F. & Lifshits, I. M. Quantum theory of defects in crystals. Zh. Eksp. Teor. Fiz. 56, 2057–2068 (1969).

    CAS 

    Google Scholar
     

  • Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543–1546 (1970).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    CAS 

    Google Scholar
     

  • Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).


    Google Scholar
     

  • Lozovik, Y. E. & Yudson, V. I. Feasibility of superfluidity of paired spatially separated electrons and holes: a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).

    ADS 

    Google Scholar
     

  • Pogrebinsky, M. B. Mutual drag of carriers in a semiconductor-insulator-semiconductor system. Fiz. Tekh. Poluprovodn. 11, 637–644 (1977).


    Google Scholar
     

  • Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, J. I. A. et al. Pairing states of composite fermions in double-layer graphene. Nat. Phys. 15, 898–903 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Interlayer fractional quantum Hall effect in a coupled graphene double layer. Nat. Phys. 15, 893–897 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Zhang, N. J. et al. Excitons in the fractional quantum Hall effect. Nature 637, 327–332 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, P. X. et al. Perfect Coulomb drag in a dipolar excitonic insulator. Science 388, 274–278 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Qi, R. et al. Perfect Coulomb drag and exciton transport in an excitonic insulator. Science 388, 278–283 (2025).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    Article 
    ADS 

    Google Scholar
     

  • Meisel, M. W. Supersolid 4He: an overview of past searches and future possibilities. Phys. B Condens. Matter 178, 121–128 (1992).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Vu, D. & Das Sarma, S. Excitonic phases in a spatially separated electron-hole ladder model. Phys. Rev. B 108, 235158 (2023).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Hu, Z. & Yang, K. Exciton crystal melting and destruction by disorder in a bilayer quantum Hall system with a total filling factor of one. Phys. Rev. B 110, 195307 (2024).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Chui, S. T., Wang, N. & Wan, C. Y. Quantum exciton solid in bilayer two-dimensional electron-hole systems. Phys. Rev. B 102, 125420 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Yoshioka, D. & MacDonald, A. H. Double quantum well electron-hole systems in strong magnetic fields. J. Phys. Soc. Jpn 59, 4211–4214 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Joglekar, Y. N., Balatsky, A. V. & Sarma, S. D. Wigner supersolid of excitons in electron-hole bilayers. Phys. Rev. B 74, 233302 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Zarenia, M., Neilson, D. & Peeters, F. M. Inhomogeneous phases in coupled electron-hole bilayer graphene sheets: charge density waves and coupled Wigner crystals. Sci. Rep. 7, 11510 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88, 206401 (2002).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Chen, X. M. & Quinn, J. J. Excitonic charge-density-wave instability of spatially separated electron-hole layers in strong magnetic fields. Phys. Rev. Lett. 67, 895–898 (1991).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yang, K. Dipolar excitons, spontaneous phase coherence, and superfluid-insulator transition in bilayer quantum Hall systems at ν = 1. Phys. Rev. Lett. 87, 056802 (2001).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Conti, S. et al. Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures. Phys. Rev. Lett. 130, 057001 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Böning, J., Filinov, A. & Bonitz, M. Crystallization of an exciton superfluid. Phys. Rev. B 84, 075130 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Szymański, J., Świerkowski, L. & Neilson, D. Correlations in coupled layers of electrons and holes. Phys. Rev. B 50, 11002–11007 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Astrakharchik, G. E., Boronat, J., Kurbakov, I. L. & Lozovik, Y. E. Quantum phase transition in a two-dimensional system of dipoles. Phys. Rev. Lett. 98, 060405 (2007).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Nguyen, R. Q. et al. Bilayer excitons in the Laughlin fractional quantum Hall state. Preprint at https://doi.org/10.48550/arXiv.2410.24208 (2024).

  • Lozovik, Y. E., Ogarkov, S. L. & Sokolik, A. A. Condensation of electron-hole pairs in a two-layer graphene system: correlation effects. Phys. Rev. B 86, 045429 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lozovik, Y. E., Volkov, S. Y. & Willander, M. Structural properties of the condensate in two-dimensional mesoscopic systems of strongly correlated excitons. JETP Lett. 79, 473–478 (2004).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Mitra, K., Williams, C. J. & Sá de Melo, C. A. R. Hexatic, Wigner crystal, and superfluid phases of dipolar bosons. Preprint at https://doi.org/10.48550/arXiv.0903.4655 (2009).

  • Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zeng, Y. et al. Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 22, 175–179 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Abergel, D. S. L., Rodriguez-Vega, M., Rossi, E. & Das Sarma, S. Interlayer excitonic superfluidity in graphene. Phys. Rev. B 88, 235402 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kellogg, M. J. Evidence for Excitonic Superfluidity in a Bilayer Two-Dimensional Electron System. PhD thesis, California Institute of Technology (2005).

  • Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wiersma, R. D. et al. Activated transport in the separate layers that form the νT = 1 exciton condensate. Phys. Rev. Lett. 93, 266805 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Burg, G. W. et al. Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene-WSe2 heterostructures. Phys. Rev. Lett. 120, 177702 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Shi, Q. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 17, 577–582 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Champagne, A. R., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Charge imbalance and bilayer two-dimensional electron systems at νT = 1. Phys. Rev. B 78, 205310 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Clarke, W. R. et al. Evolution of the bilayer ν = 1 quantum Hall state under charge imbalance. Phys. Rev. B 71, 081304 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Joglekar, Y. N. & MacDonald, A. H. Bias-voltage-induced phase transition in bilayer quantum Hall ferromagnets. Phys. Rev. B 65, 235319 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Andrei, E. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Jiang, H. W. et al. Quantum liquid versus electron solid around ν = 1/5 Landau-level filling. Phys. Rev. Lett. 65, 633–636 (1990).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ma, M. K. et al. Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid. Phys. Rev. Lett. 125, 036601 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gervais, G. et al. Competition between a fractional quantum Hall liquid and bubble and Wigner crystal phases in the third Landau level. Phys. Rev. Lett. 93, 266804 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Goldman, V. J., Santos, M., Shayegan, M. & Cunningham, J. E. Evidence for two-dimensional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Tsui, Y.-C. et al. Direct observation of a magnetic-field-induced Wigner crystal. Nature 628, 287–292 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Hatke, A. T. et al. Wigner solid pinning modes tuned by fractional quantum Hall states of a nearby layer. Sci. Adv. 5, eaao2848 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments