Wednesday, January 28, 2026
No menu items!
HomeNatureDisentangling multiple gas kinematic drivers in the Perseus galaxy cluster

Disentangling multiple gas kinematic drivers in the Perseus galaxy cluster

  • Vikhlinin, A. A., Kravtsov, A. V., Markevich, M. L., Sunyaev, R. A. & Churazov, E. M. Clusters of galaxies. Phys. Usp. 57, 317–341 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kravtsov, A. V. & Borgani, S. Formation of galaxy clusters. Annu. Rev. Astron. Astrophys. 50, 353–409 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Simionescu, A. et al. Constraining gas motions in the intra-cluster medium. Space Sci. Rev. 215, 24 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tashiro, M. et al. Status of X-Ray Imaging and Spectroscopy Mission (XRISM). In Proc. SPIE 11444, 1144422 (2020).

  • Hitomi Collaboration The quiescent intracluster medium in the core of the Perseus cluster. Nature 535, 117–121 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hitomi Collaboration Atmospheric gas dynamics in the Perseus cluster observed with Hitomi. Publ. Astron. Soc. Jpn 70, 9 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Forman, W., Kellogg, E., Gursky, H., Tananbaum, H. & Giacconi, R. Observations of the extended X-ray sources in the Perseus and Coma clusters from UHURU. Astrophys. J. 178, 309–316 (1972).

    Article 
    ADS 

    Google Scholar
     

  • Conselice, C. J., Gallagher III, J. S. & Wyse, R. F. On the nature of the NGC 1275 system. Astron. J. 122, 2281–2300 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fabian, A. C. et al. A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, L43–L47 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Churazov, E., Forman, W., Jones, C. & Böhringer, H. XMM-Newton observations of the Perseus cluster. I. The temperature and surface brightness structure. Astrophys. J. 590, 225–237 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Urban, O. et al. Azimuthally resolved X-ray spectroscopy to the edge of the Perseus cluster. Mon. Not. R. Astron. Soc. 437, 3939–3961 (2014).

    Article 
    ADS 

    Google Scholar
     

  • van Weeren, R. J. et al. LOFAR high-band antenna observations of the Perseus cluster: the discovery of a giant radio halo. Astron. Astrophys. 692, A12 (2024).

    Article 

    Google Scholar
     

  • Boehringer, H., Voges, W., Fabian, A. C., Edge, A. C. & Neumann, D. M. A ROSAT HRI study of the interaction of the X-ray emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, L25–L28 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Churazov, E., Forman, W., Jones, C. & Böhringer, H. Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788–794 (2000).

    ADS 

    Google Scholar
     

  • Zhuravleva, I. et al. Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C., Churazov, E. & Schekochihin, A. A. Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon. Not. R. Astron. Soc. 478, 4785–4798 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. Bubble-driven gas uplift in galaxy clusters and its velocity features. Mon. Not. R. Astron. Soc. 517, 616–631 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Simionescu, A. et al. Large-scale motions in the Perseus galaxy cluster. Astrophys. J. 757, 182 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Walker, S. A., ZuHone, J., Fabian, A. & Sanders, J. The split in the ancient cold front in the Perseus cluster. Nat. Astron. 2, 292–296 (2018).

    Article 
    ADS 

    Google Scholar
     

  • ZuHone, J. A., Markevitch, M. & Lee, D. Sloshing of the magnetized cool gas in the cores of galaxy clusters. Astrophys. J. 743, 16 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ichinohe, Y., Simionescu, A., Werner, N., Fabian, A. C. & Takahashi, T. Substructures associated with the sloshing cold front in the Perseus cluster. Mon. Not. R. Astron. Soc. 483, 1744–1753 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bellomi, E. et al. On the origin of the ancient, large-scale cold front in the Perseus cluster of galaxies. Astrophys. J. 974, 234 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Lea, S. M. The dynamics of the intergalactic medium in the vicinity of clusters of galaxies. Astrophys. J. 203, 569–580 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Cowie, L. L. & Binney, J. Radiative regulation of gas flow within clusters of galaxies: a model for cluster X-ray sources. Astrophys. J. 215, 723–732 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fabian, A. C. & Nulsen, P. E. J. Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 180, 479–484 (1977).

    Article 
    ADS 

    Google Scholar
     

  • Peterson, J. R. & Fabian, A. C. X-ray spectroscopy of cooling clusters. Phys. Rep. 427, 1–39 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Fabian, A. C. et al. Hidden cooling flows in clusters of galaxies. Mon. Not. R. Astron. Soc. 515, 3336–3345 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kolmogorov, A. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akad. Nauk SSSR Dokl. 30, 301–305 (1941).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Ishisaki, Y. et al. Status of Resolve instrument onboard X-Ray Imaging and Spectroscopy Mission (XRISM). Proc. SPIE 12181, 121811S (2022).

  • Gendron-Marsolais, M. et al. Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. Mon. Not. R. Astron. Soc. 479, L28–L33 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vigneron, B. et al. High-spectral-resolution observations of the optical filamentary nebula surrounding NGC 1275. Astrophys. J. 962, 96 (2024).

    Article 
    ADS 

    Google Scholar
     

  • ZuHone, J. A., Miller, E. D., Simionescu, A. & Bautz, M. W. Simulating Astro-H observations of sloshing gas motions in the cores of galaxy clusters. Astrophys. J. 821, 6 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. Mapping the Perseus galaxy cluster with XRISM: gas kinematic features and their implications for turbulence. Astron. Astrophys. https://doi.org/10.1051/0004-6361/202557660 (2025).

  • Sanders, J. S. et al. Measuring bulk flows of the intracluster medium in the Perseus and Coma galaxy clusters using XMM-Newton. Astron. Astrophys. 633, A42 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhuravleva, I., Churazov, E., Kravtsov, A. & Sunyaev, R. Constraints on the ICM velocity power spectrum from the X-ray lines width and shift. Mon. Not. R. Astron. Soc. 422, 2712–2724 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Miniati, F. The Matryoshka Run. II. Time-dependent turbulence statistics, stochastic particle acceleration, and microphysics impact in a massive galaxy cluster. Astrophys. J. 800, 60 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Shi, X., Nagai, D. & Lau, E. T. Multiscale analysis of turbulence evolution in the density-stratified intracluster medium. Mon. Not. R. Astron. Soc. 481, 1075–1082 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heinrich, A., Chen, Y.-H., Heinz, S., Zhuravleva, I. & Churazov, E. Constraining black hole feedback in galaxy clusters from X-ray power spectra. Mon. Not. R. Astron. Soc. 505, 4646–4654 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Direct detection of black hole-driven turbulence in the centers of galaxy clusters. Astrophys. J. Lett. 889, L1 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Timmerman, R. et al. Measuring cavity powers of active galactic nuclei in clusters using a hybrid X-ray-radio method. A new window on feedback opened by subarcsecond LOFAR-VLBI observations. Astron. Astrophys. 668, A65 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hitomi Collaboration Measurements of resonant scattering in the Perseus cluster core with Hitomi SXS. Publ. Astron. Soc. Jpn 70, 10 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhuravleva, I. V., Churazov, E. M., Sazonov, S. Y., Sunyaev, R. A. & Dolag, K. Resonant scattering in galaxy clusters for anisotropic gas motions on various spatial scales. Astron. Lett. 37, 141–153 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kang, W. et al. A deep redshift survey of the Perseus cluster (A426): spatial distribution and kinematics of galaxies. Astrophys. J. Suppl. Ser. 272, 22 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heinrich, A. et al. Merger-driven multiscale ICM density perturbations: testing cosmological simulations and constraining plasma physics. Mon. Not. R. Astron. Soc. 528, 7274–7299 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ota, N., Nagai, D. & Lau, E. T. Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy. Publ. Astron. Soc. Jpn 70, 51 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bourne, M. A. & Sijacki, D. AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence. Mon. Not. R. Astron. Soc. 472, 4707–4735 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ehlert, K., Weinberger, R., Pfrommer, C. & Springel, V. Connecting turbulent velocities and magnetic fields in galaxy cluster simulations with active galactic nuclei jets. Mon. Not. R. Astron. Soc. 503, 1327–1344 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fielding, D. B. et al. First results from SMAUG: uncovering the origin of the multiphase circumgalactic medium with a comparative analysis of idealized and cosmological simulations. Astrophys. J. 903, 32 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • XRISM Collaboration The XRISM first-light observation: velocity structure and thermal properties of the supernova remnant N132D. Publ. Astron. Soc. Jpn 76, 1186–1201 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Xrism Collaboration XRISM Spectroscopy of the Fe Kα emission line in the Seyfert active galactic nucleus NGC 4151 reveals the disk, broad-line region, and torus. Astrophys. J. Lett. 973, L25 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Porter, F. S. et al. In-flight performance of the XRISM/Resolve detector system. In Proc. SPIE 13093, 130931K (2024).

  • Dauser, T. et al. SIXTE: a generic X-ray instrument simulation toolkit. Astron. Astrophys. 630, A66 (2019).

    Article 

    Google Scholar
     

  • Hitomi Collaboration Hitomi observation of radio galaxy NGC 1275: The first X-ray microcalorimeter spectroscopy of Fe-Kα line emission from an active galactic nucleus. Publ. Astron. Soc. Jpn 70, 13 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Reynolds, C. S. et al. Probing the circumnuclear environment of NGC 1275 with high-resolution X-ray spectroscopy. Mon. Not. R. Astron. Soc. 507, 5613–5624 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fukazawa, Y. et al. X-ray and GeV gamma-ray variability of the radio galaxy NGC 1275. Astrophys. J. 855, 93 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Vikhlinin, A. et al. Chandra temperature profiles for a sample of nearby relaxed galaxy clusters. Astrophys. J. 628, 655–672 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arnaud, K. A. XSPEC: the first ten years. In Proc. Astronomical Data Analysis Software and Systems V, Astronomical Society of the Pacific Conference Series Vol. 101 (eds Jacoby, G. H. & Barnes, J.) 17–20 (Astronomical Society of the Pacific, 1996).

  • Willingale, R., Starling, R. L. C., Beardmore, A. P., Tanvir, N. R. & O’Brien, P. T. Calibration of X-ray absorption in our Galaxy. Mon. Not. R. Astron. Soc. 431, 394–404 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lodders, K., Palme, H. & Gail, H.-P. in Landolt Börnstein—Group VI Astronomy and Astrophysics 4B (Solar System) (ed. Trümper, J. E.) Ch. 4.4 (Springer, 2009).

  • Gilfanov, M. R., Syunyaev, R. A. & Churazov, E. M. Radial brightness profiles of resonance X-ray lines in galaxy clusters. Sov. Astron. Lett. 13, 3 (1987).

    ADS 

    Google Scholar
     

  • Kilbourne, C. A. et al. In-flight calibration of Hitomi Soft X-ray Spectrometer. (1) Background. Publ. Astron. Soc. Jpn 70, 18 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tang, X. & Churazov, E. Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters. Mon. Not. R. Astron. Soc. 468, 3516–3532 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. Suppl. Ser. 88, 253 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sreenivasan, K. R. On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778–2784 (1995).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15, L21–L24 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fryxell, B. et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eswaran, V. & Pope, S. B. An examination of forcing in direct numerical simulations of turbulence. Comput. Fluids 16, 257–278 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, W., Hillebrandt, W. & Niemeyer, J. C. Numerical dissipation and the bottleneck effect in simulations of compressible isotropic turbulence. Comput. Fluids 35, 353–371 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. & Mac Low, M. M. Comparing the statistics of interstellar turbulence in simulations and observations: solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Porter, D. H., Jones, T. W. & Ryu, D. Vorticity, shocks, and magnetic fields in subsonic, ICM-like turbulence. Astrophys. J. 810, 93 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Brethouwer, G., Billant, P., Lindborg, E. & Chomaz, J. M. Scaling analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech. 585, 343 (2007).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Shi, X. & Zhang, C. Turbulence decay in the density-stratified intracluster medium. Mon. Not. R. Astron. Soc. 487, 1072–1081 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mohapatra, R., Federrath, C. & Sharma, P. Turbulent density and pressure fluctuations in the stratified intracluster medium. Mon. Not. R. Astron. Soc. 500, 5072–5087 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bellomi, E. et al. Disentangling AGN Feedback and Sloshing in the Perseus Cluster with XRISM: Insights from Simulations. Preprint at https://arxiv.org/abs/2512.12754 (2026).

  • Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Weinberger, R., Springel, V. & Pakmor, R. The AREPO public code release. Astrophys. J. Suppl. Ser. 248, 32 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Weinberger, R., Ehlert, K., Pfrommer, C., Pakmor, R. & Springel, V. Simulating the interaction of jets with the intracluster medium. Mon. Not. R. Astron. Soc. 470, 4530–4546 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • ZuHone, J. A., Markevitch, M., Weinberger, R., Nulsen, P. & Ehlert, K. How merger-driven gas motions in galaxy clusters can turn AGN bubbles into radio relics. Astrophys. J. 914, 73 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vogelsberger, M. et al. A model for cosmological simulations of galaxy formation physics. Mon. Not. R. Astron. Soc. 436, 3031–3067 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sanders, J. S. & Fabian, A. C. A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fabian, A. C. et al. Do sound waves transport the AGN energy in the Perseus cluster? Mon. Not. R. Astron. Soc. 464, L1–L5 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments