Friday, January 23, 2026
No menu items!
HomeNatureCommon variation in meiosis genes shapes human recombination and aneuploidy

Common variation in meiosis genes shapes human recombination and aneuploidy

  • Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nat. Rev. Genet. 2, 280–291 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gruhn, J. R. & Hoffmann, E. R. Errors of the egg: the establishment and progression of human aneuploidy research in the maternal germline. Annu. Rev. Genet. 56, 369–390 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Baudat, F., Imai, Y. & de Massy, B. Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14, 794–806 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hassold, T. J. & Hunt, P. A. Missed connections: recombination and human aneuploidy. Prenat. Diagn. 41, 584–590 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Macklon, N. S., Geraedts, J. P. M. & Fauser, B. C. J. M. Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Hum. Reprod. Update 8, 333–343 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • McCoy, R. C. et al. Meiotic and mitotic aneuploidies drive arrest of in vitro fertilized human preimplantation embryos. Genome Med. 15, 77 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Handel, M. A. & Schimenti, J. C. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat. Rev. Genet. 11, 124–136 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Revenkova, E., Herrmann, K., Adelfalk, C. & Jessberger, R. Oocyte cohesin expression restricted to predictyate stages provides full fertility and prevents aneuploidy. Curr. Biol. 20, 1529–1533 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tachibana-Konwalski, K. et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24, 2505–2516 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hassold, T. et al. Failure to recombine is a common feature of human oogenesis. Am. J. Hum. Genet. 108, 16–24 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lamb, N. E. et al. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum. Mol. Genet. 6, 1391–1399 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Lister, L. M. et al. Age-related meiotic segregation errors in mammalian oocytes are preceded by depletion of cohesin and Sgo2. Curr. Biol. 20, 1511–1521 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gruhn, J. R. et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science 365, 1466–1469 (2019).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science 363, eaau1043 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Kong, A. et al. Recombination rate and reproductive success in humans. Nat. Genet. 36, 1203–1206 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ottolini, C. S. et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat. Genet. 47, 727–735 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bell, A. D. et al. Insights into variation in meiosis from 31,228 human sperm genomes. Nature 583, 259–264 (2020).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Hinch, A. G. et al. Factors influencing meiotic recombination revealed by whole-genome sequencing of single sperm. Science 363, eaau8861 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • McCoy, R. C. et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 11, e1005601 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warren, A. C. et al. Evidence for reduced recombination on the nondisjoined chromosomes 21 in Down syndrome. Science 237, 652–654 (1987).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Lamb, N. E. et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat. Genet. 14, 400–405 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ariad, D. et al. Aberrant landscapes of maternal meiotic crossovers contribute to aneuploidies in human embryos. Genome Res. 34, 70–84 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Coop, G., Wen, X., Ober, C., Pritchard, J. K. & Przeworski, M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319, 1395–1398 (2008).

    Article 
    PubMed 
    ADS 
    CAS 

    Google Scholar
     

  • Porubsky, D. et al. Human de novo mutation rates from a four-generation pedigree reference. Nature 643, 427–436 (2025).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Kong, A. et al. Common and low-frequency variants associated with genome-wide recombination rate. Nat. Genet. 46, 11–16 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • GTEx Consortium The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article 

    Google Scholar
     

  • Gómez-H, L. et al. C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat. Commun. 7, 13298 (2016).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Strong, E. R. & Schimenti, J. C. Evidence implicating CCNB1IP1, a RING domain-containing protein required for meiotic crossing over in mice, as an E3 SUMO ligase. Genes 1, 440–451 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Per-nucleus crossover covariation and implications for evolution. Cell 177, 326–338 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hassold, T. J. A cytogenetic study of repeated spontaneous abortions. Am. J. Hum. Genet. 32, 723–730 (1980).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Revenkova, E. et al. Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat. Cell Biol. 6, 555–562 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Murdoch, B. et al. Altered cohesin gene dosage affects mammalian meiotic chromosome structure and behavior. PLoS Genet. 9, e1003241 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Taylor, D. J. et al. Sources of gene expression variation in a globally diverse human cohort. Nature 632, 122–130 (2024).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Garcia-Alonso, L. et al. Single-cell roadmap of human gonadal development. Nature 607, 540–547 (2022).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Chitiashvili, T. et al. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation. Nat. Cell Biol. 22, 1436–1446 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • ENCODE Project Consortium An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Xiong, M. et al. A common variant rs2272804 in the 5′UTR of RIBC2 inhibits downstream gene expression by creating an upstream open reading frame. Eur. Rev. Med. Pharmacol. Sci. 24, 3839–3848 (2020).

    PubMed 
    CAS 

    Google Scholar
     

  • Fan, S. et al. Homozygous mutations in C14orf39/SIX6OS1 cause non-obstructive azoospermia and premature ovarian insufficiency in humans. Am. J. Hum. Genet. 108, 324–336 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Sánchez-Sáez, F. et al. Meiotic chromosome synapsis depends on multivalent SYCE1–SIX6OS1 interactions that are disrupted in cases of human infertility. Sci. Adv. 6, eabb1660 (2020).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Schmiesing, J. A., Gregson, H. C., Zhou, S. & Yokomori, K. A human condensin complex containing hCAP-C-hCAP-E and CNAP1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation. Mol. Cell. Biol. 20, 6996–7006 (2000).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ruth, K. S. et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 596, 393–397 (2021).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Kentistou, K. A. et al. Understanding the genetic complexity of puberty timing across the allele frequency spectrum. Nat. Genet. 56, 1397–1411 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Reynolds, A. et al. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat. Genet. 45, 269–278 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Day, F. R. et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat. Genet. 47, 1294–1303 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Stankovic, S. et al. Genetic links between ovarian ageing, cancer risk and de novo mutation rates. Nature 633, 608–614 (2024).

    Article 
    PubMed 
    PubMed Central 
    ADS 
    CAS 

    Google Scholar
     

  • Venkatesh, S. S. et al. Genome-wide analyses identify 21 infertility loci and relationships with reproductive traits across the allele frequency spectrum. Nat. Genet. 57, 1107–1118 (2025).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Albers, P. K. & McVean, G. Dating genomic variants and shared ancestry in population-scale sequencing data. PLoS Biol. 18, e3000586 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawson, D. W. & Mace, R. Parental investment and the optimization of human family size. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 333–343 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mathieson, I. et al. Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus. Nat. Hum. Behav. 7, 790–801 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, D., Zhou, Y., Xu, Y., Meng, R. & Gamazon, E. R. A phenome-wide scan reveals convergence of common and rare variant associations. Genome Med. 15, 101 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hou, D. et al. Variations of C14ORF39 and SYCE1 identified in idiopathic premature ovarian insufficiency and nonobstructive azoospermia. J. Clin. Endocrinol. Metab. 107, 724–734 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mastrorosa, F. K. et al. Complete chromosome 21 centromere sequences from a Down syndrome family reveal size asymmetry and differences in kinetochore attachment. Preprint at bioRxiv https://doi.org/10.1101/2024.02.25.581464 (2025).

  • Hinch, R., Donnelly, P. & Hinch, A. G. Meiotic DNA breaks drive multifaceted mutagenesis in the human germ line. Science 382, eadh2531 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Forni, D., Mozzi, A., Sironi, M. & Cagliani, R. Positive selection drives the evolution of the structural maintenance of chromosomes (SMC) complexes. Genes 15, 1159 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Biddanda, A., Carioscia, S., Starostik, M. & McCoy, R. Data for ‘Carioscia, S. A., Biddanda, A., et al. (2025). Common variation in meiosis genes shapes human recombination phenotypes and aneuploidy risk’. Zenodo https://doi.org/10.5281/zenodo.15114527 (2025).

  • Biddanda, A. mccoy-lab/natera_genotyping: final submission. Zenodo https://doi.org/10.5281/zenodo.17429676 (2025).

  • Biddanda, A. & McCoy, R. mccoy-lab/natera_recomb: final submission. Zenodo https://doi.org/10.5281/zenodo.17429678 (2025).

  • Biddanda, A. mccoy-lab/karyohmm: final submission. Zenodo https://doi.org/10.5281/zenodo.17429669 (2025).

  • Carioscia, S., Biddanda, A. & Starostik, M. mccoy-lab/natera_aneuploidy: final submission. Zenodo https://doi.org/10.5281/zenodo.17429672 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments