Thursday, January 22, 2026
No menu items!
HomeNatureFibre integrated circuits by a multilayered spiral architecture

Fibre integrated circuits by a multilayered spiral architecture

  • He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Zeng, S. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang, K. et al. Design and fabrication of wearable electronic textiles using twisted fiber-based threads. Nat. Protoc. 19, 1557–1589 (2024).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Zeng, K. et al. Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nat. Rev. Mater. 8, 552–561 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Liao, M. et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17, 372–377 (2022).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Lu, C. et al. High-performance fibre battery with polymer gel electrolyte. Nature 629, 86–91 (2024).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Bai, H. et al. Stretchable distributed fiber-optic sensors. Science 370, 848–852 (2020).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, L. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. High-quality semiconductor fibres via mechanical design. Nature 626, 72–78 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Towards integrated textile display systems. Nat. Rev. Electr. Eng. 1, 466–477 (2024).

    Article 

    Google Scholar
     

  • Wang, P. et al. Well-defined in-textile photolithography towards permeable textile electronics. Nat. Commun. 15, 887 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Luo, Y. et al. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4, 193–201 (2021).

    Article 

    Google Scholar
     

  • Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019).

    Article 

    Google Scholar
     

  • Chen, X. D., Kim, D. H. & Lu, N. S. Introduction: wearable devices. Chem. Rev. 124, 6145–6147 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Libanori, A. et al. Smart textiles for personalized healthcare. Nat. Electron. 5, 142–156 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. A non-printed integrated-circuit textile for wireless theranostics. Nat. Commun. 12, 4876 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lin, R. et al. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 13, 2190 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Loke, G. et al. Computing fabrics. Matter 2, 786–788 (2020).

    Article 

    Google Scholar
     

  • Qian, S. et al. A ‘Moore’s law’ for fibers enables intelligent fabrics. Natl Sci. Rev. 10, nwac202 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Yang, W. et al. Single body-coupled fiber enables chipless textile electronics. Science 384, 74–81 (2024).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 3317 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Hwang, S. et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13, 3173 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gupta, N. et al. A single-fibre computer enables textile networks and distributed inference. Nature 639, 79–86 (2025).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Khatib, M. et al. High-density soft bioelectronic fibres for multimodal sensing and stimulation. Nature 645, 656–664 (2025).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Li, J. et al. A tissue-like neurotransmitter sensor for the brain and gut. Nature 606, 94–101 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Oh, J. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Newton, A. R. Computer-aided design of VLSI circuits. Proc. IEEE 69, 1189–1199 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, P. et al. Interpretation of hopping transport based on pentacene thin-film transistors. IEEE Trans. Electron Devices 70, 6364–6368 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, N. et al. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 381, 686–693 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meng, J. et al. A high-speed 2D optoelectronic in-memory computing device with 6-bit storage and pattern recognition capabilities. Nano Res. 15, 2472–2478 (2021).

    Article 
    ADS 

    Google Scholar
     

  • LeCun, Y. et al. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Ham, S. et al. One-dimensional organic artificial multi-synapses enabling electronic textile neural network for wearable neuromorphic applications. Sci. Adv. 6, eaba1178 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, D. et al. A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat. Electron. 7, 1176–1185 (2024).

    Article 

    Google Scholar
     

  • Wang, N. et al. High-performance thermoelectric fibers from metal-backboned polymers for body-temperature wearable power devices. Angew. Chem. Int. Ed. 63, e202403415 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kwon, S. et al. Weavable and highly efficient organic light-emitting fibers for wearable electronics: a scalable, low-temperature process. Nano Lett. 18, 347–356 (2018).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Song, Y. J. et al. Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays. ACS Nano 14, 1133–1140 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Xu, H. et al. Copolymerization of parylene C and parylene F to enhance adhesion and thermal stability without coating performance degradation. Polymers 15, 1249 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Zimniewska, M. et al. in Towards a 4th Industrial Revolution of Textiles and Clothing. A Strategic Innovation and Research Agenda for the European Textile and Clothing Industry (ed. Walter, L.) 6–8 (European Technology Platform, 2016).

  • Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • Flavin, M. T. et al. Bioelastic state recovery for haptic sensory substitution. Nature 635, 345–352 (2024).

    Article 
    ADS 
    PubMed 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments