Thursday, January 22, 2026
No menu items!
HomeNatureCore–envelope miscibility in sub-Neptunes and super-Earths

Core–envelope miscibility in sub-Neptunes and super-Earths

  • Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).

    Article 

    Google Scholar
     

  • Fulton, B. J. et al. The California-Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

    Article 

    Google Scholar
     

  • Valencia, D., O’Connell, R. J. & Sasselov, D. Internal structure of massive terrestrial planets. Icarus 181, 545–554 (2006).

    Article 

    Google Scholar
     

  • Lopez, E. D. & Fortney, J. J. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014).

    Article 

    Google Scholar
     

  • Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019).

    Article 

    Google Scholar
     

  • Ginzburg, S., Schlichting, H. E. & Sari, R. Super-earth atmospheres: self-consistent gas accretion and retention. Astrophys. J. 825, 29 (2016).

    Article 

    Google Scholar
     

  • Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).

    Article 

    Google Scholar
     

  • Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).

    Article 

    Google Scholar
     

  • Gupta, A. & Schlichting, H. E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 487, 24–33 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mordasini, C. Planetary evolution with atmospheric photoevaporation-I. Analytical derivation and numerical study of the evaporation valley and transition from super-Earths to sub-Neptunes. Astron. Astrophys. 638, A52 (2020).

    Article 

    Google Scholar
     

  • Rogers, J. G. & Owen, J. E. Unveiling the planet population at birth. Mon. Not. R. Astron. Soc. 503, 1526–1542 (2021).

    Article 

    Google Scholar
     

  • Johnson, J. A. et al. The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. Astron. J. 154, 108 (2017).

    Article 

    Google Scholar
     

  • Hayashi, C., Nakazawa, K. & Mizuno, H. Earths melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979).

    Article 

    Google Scholar
     

  • Young, E. D., Shahar, A. & Schlichting, H. E. Earth shaped by primordial H2 atmospheres. Nature 616, 306–311 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Bodenheimer, P., Stevenson, D. J., Lissauer, J. J. & D’Angelo, G. New formation models for the Kepler-36 system. Astrophys. J. 868, 138 (2018).

    Article 

    Google Scholar
     

  • Tang, Y. et al. Reassessing sub-Neptune structure, radii, and thermal evolution. Astrophys. J. 989, 28 (2025).

    Article 

    Google Scholar
     

  • Brygoo, S. et al. Evidence of hydrogen-helium immiscibility at Jupiter-interior conditions. Nature 593, 2021–521 (2021).

    Article 

    Google Scholar
     

  • Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345, 38–48 (2012).

    Article 

    Google Scholar
     

  • Markham, S., Guillot, T. & Stevenson, D. Convective inhibition with an ocean. I. Supercritical cores on sub-Neptunes/super-Earths. Astron. Astrophys. 665, A12 (2022).

    Article 

    Google Scholar
     

  • Xiao, B. & Stixrude, L. Critical vaporization of MgSiO3. Proc. Natl Acad. Sci. USA 115, 5371–5376 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Insixiengmay, L. & Stixrude, L. MgO miscibility in liquid iron. Earth Planet. Sci. Lett. 654, 119242 (2025).

    Article 

    Google Scholar
     

  • Widom, B. Potential-distribution theory and the statistical-mechanics of fluids. J. Phys. Chem. 86, 869–872 (1982).

    Article 

    Google Scholar
     

  • Willard, A. P. & Chandler, D. Instantaneous Liquid Interfaces. J. Phys. Chem. B 114, 1954–1958 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chachan, Y. & Stevenson, D. J. On the role of dissolved gases in the atmosphere retention of low-mass low-density planets. Astrophys. J. 854, 21 (2018).

    Article 

    Google Scholar
     

  • Kite, E. S., Fegley, B. Jr, Schaefer, L. & Ford, E. B. Superabundance of exoplanet sub-Neptunes explained by fugacity crisis. Astrophys. J. Lett. 887, L33 (2019).

    Article 

    Google Scholar
     

  • Kite, E. S., Fegley, B., Schaefer, L. & Ford, E. B. Atmosphere origins for exoplanet sub-Neptunes. Astrophys. J. 891, 111 (2020).

    Article 

    Google Scholar
     

  • Schlichting, H. E. & Young, E. D. Chemical equilibrium between cores, mantles, and atmospheres of super-Earths and sub-Neptunes and implications for their compositions, interiors, and evolution. Planet Sci. J. 3, 127 (2022).

    Article 

    Google Scholar
     

  • Paonita, A. Noble gas solubility in silicate melts: a review of experimentation and theory, and implications regarding magma degassing processes. Ann. Geophys. 48, 647–669 (2005).


    Google Scholar
     

  • Steinmeyer, M.-L. & Johansen, A. Vapor equilibrium models of accreting rocky planets demonstrate direct core growth by pebble accretion. Astron. Astrophys. 683, A217 (2024).

    Article 

    Google Scholar
     

  • Brouwers, M. G., Vazan, A. & Ormel, C. W. How cores grow by pebble accretion. I. Direct core growth. Astron. Astrophys. 611, A65 (2018).

    Article 

    Google Scholar
     

  • Ormel, C. W., Vazan, A. & Brouwers, M. G. How planets grow by pebble accretion. III. Emergence of an interior composition gradient. Astron. Astrophys. 647, A175 (2021).

    Article 

    Google Scholar
     

  • Misener, W., Schlichting, H. E. & Young, E. D. Atmospheres as windows into sub-Neptune interiors: coupled chemistry and structure of hydrogen-silane-water envelopes. Mon. Not. R. Astron. Soc. 524, 981–992 (2023).

    Article 

    Google Scholar
     

  • Manning, C. E. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223, 1–16 (2004).

    Article 

    Google Scholar
     

  • Mookherjee, M., Stixrude, L. & Karki, B. Hydrous silicate melt at high pressure. Nature 452, 983–986 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kovačević, T., González-Cataldo, F., Stewart, S. T. & Militzer, B. Miscibility of rock and ice in the interiors of water worlds. Sci. Rep. 12, 13055 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, E. D., Stixrude, L., Rogers, J. G., Schlichting, H. E. & Marcum, S. P. Equilibria of sub-Neptunes and super-Earths. Planet. Sci. J. 5, 268 (2024).

    Article 

    Google Scholar
     

  • McQuarrie, N., Stock, J. M., Verdel, C. & Wernicke, B. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett. 30, 2036 (2003).

    Article 

    Google Scholar
     

  • Shinozaki, A. et al. Preferential dissolution of SiO2 from enstatite to H2 fluid under high pressure and temperature. Phys. Chem. Miner. 43, 277–285 (2016).

    Article 

    Google Scholar
     

  • Stolper, E. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620 (1982).

    Article 

    Google Scholar
     

  • Benneke, B. et al. JSWT reveals CH4, CO2, and H2O in a metal-rich miscible atmosphere on a two-Earth-radius exoplanet. Preprint at https://doi.org/10.48550/arXiv.2403.03325 (2024).

  • Beatty, T. G. et al. Sulfur dioxide and other molecular species in the atmosphere of the sub-Neptune GJ 3470 b. Astrophys. J. Lett. 970, L10 (2024).

    Article 

    Google Scholar
     

  • Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “steam world” atmosphere of GJ 9827 d. Astrophys. J. Lett. 974, L10 (2024).

    Article 

    Google Scholar
     

  • Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores. Nat. Astron. 8, 463–471 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, 2021, e2020JE006639 (2021).

  • McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article 

    Google Scholar
     

  • Werlen, A., Dorn, C., Schlichting, H. E., Grimm, S. L. & Young, E. D. Atmospheric C/O ratios of sub-Neptunes with magma oceans: homemade rather than inherited. Astrophys. J. Lett. 988, L55 (2025).

    Article 

    Google Scholar
     

  • Zilinskas, M., Miguel, Y., van Buchem, C. P. A. & Snellen, I. A. G. Observability of silicates in volatile atmospheres of super-Earths and sub-Neptunes: exploring the edge of the evaporation desert. Astron. Astrophys. 671, A138 (2023).

    Article 

    Google Scholar
     

  • Faherty, J. K. et al. JWST detects silane in a cold low-metallicity world. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-5507891/v1 (2025).

  • Ito, Y., Kimura, T., Ohno, K., Fujii, Y. & Ikoma, M. Monosilane worlds: sub-Neptunes with atmospheres shaped by reduced magma oceans. Astrophys. J. 987, 174 (2025).

    Article 

    Google Scholar
     

  • Hakim, K., Bower, D. J., Seidler, F. & Sossi, P. A. Silane-methane competition in sub-Neptune atmospheres as a diagnostic of metallicity and magma oceans. Preprint at https://arxiv.org/abs/2508.19235 (2025).

  • Lee, E. J. & Chiang, E. To cool is to accrete: analytic scalings for nebular accretion of planetary atmospheres. Astrophys. J. 811, 41 (2015).

    Article 

    Google Scholar
     

  • Misener, W. & Schlichting, H. E. To cool is to keep: residual H/He atmospheres of super-Earths and sub-Neptunes. Mon. Not. R. Astron. Soc. 503, 5658–5674 (2021).

    Article 

    Google Scholar
     

  • Vazan, A., Ormel, C. W. & Brouwers, M. G. How planets grow by pebble accretion V. Silicate rainout delays the contraction of sub-Neptunes. Astron. Astrophys. 687, A262 (2024).

    Article 

    Google Scholar
     

  • Leconte, J., Selsis, F., Hersant, F. & Guillot, T. Condensation-inhibited convection in hydrogen-rich atmospheres: stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Neptune. Astron. Astrophys. 598, A98 (2017).

    Article 

    Google Scholar
     

  • Kite, E. S. & Schaefer, L. Water on hot rocky exoplanets. Astrophys. J. Lett. 909, L22 (2021).

    Article 

    Google Scholar
     

  • Rogers, J. G., Schlichting, H. E. & Young, E. D. Fleeting but not forgotten: the imprint of escaping hydrogen atmospheres on super-Earth interiors. Astrophys. J. 970, 47 (2024).

    Article 

    Google Scholar
     

  • Presnall, D. C. & Gasparik, T. Melting of enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2SiO4) – majorite (MgSiO3) eutectic at 16.5 GPa: implications for the origin of the mantle. J. Geophys. Res. 95, 15771–15777 (1990).

    Article 

    Google Scholar
     

  • Gupta, A., Stixrude, L. & Schlichting, H. E. The miscibility of hydrogen and water in planetary atmospheres and interiors. Astrophys. J. Lett. 982, L35 (2025).

    Article 

    Google Scholar
     

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 

    Google Scholar
     

  • Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965).

    Article 
    MathSciNet 

    Google Scholar
     

  • Nosé, S. A Unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article 

    Google Scholar
     

  • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article 

    Google Scholar
     

  • Hopkins, C. W., Le Grand, S., Walker, R. C. & Roitberg, A. E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 11, 1864–1874 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Buff, F. P., Lovett, R. A. & Stillinger, F. H. Jr Interfacial density profile for fluids in critical region. Phys. Rev. Lett. 15, 621–623 (1965).

    Article 

    Google Scholar
     

  • Parrinello, M. & Rahman, A. Crystal structure and pair potentials: a molecular dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).

    Article 

    Google Scholar
     

  • Parrinello, M. & Rahman, A. Polymorphic phase transitions in single-crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7290 (1981).

    Article 

    Google Scholar
     

  • Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon Press, 1989).

  • Hoover, W. G., Ladd, A. J. C. & Moran, B. High-strain-rate plastic-flow studied via non-equilibrium molecular-dynamics. Phys. Rev. Lett. 48, 1818–1820 (1982).

    Article 

    Google Scholar
     

  • Evans, D. J. Computer “experiment” for non-linear thermodynamics of Couette-flow. J. Chem. Phys. 78, 3297–3302 (1983).

    Article 

    Google Scholar
     

  • Desjarlais, M. P. First-principles calculation of entropy for liquid metals. Phys. Rev. E 88, 062145 (2013).

    Article 

    Google Scholar
     

  • Wilson, A. & Stixrude, L. Entropy, dynamics, and freezing of CaSiO3 liquid. Geochim. Cosmochim. Acta 302, 1–17 (2021).

    Article 

    Google Scholar
     

  • Flyvbjerg, H. & Petersen, H. G. Error-estimates on averages of correlated data. J. Chem. Phys. 91, 461–466 (1989).

    Article 
    MathSciNet 

    Google Scholar
     

  • Dragulet, F. & Stixrude, L. Electrical and thermal conductivity of Earth’s iron-enriched basal magma ocean. Proc. Natl Acad. Sci. USA. 122, e2509771122 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article 

    Google Scholar
     

  • Atreya, S. K. et al. Deep atmosphere composition, structure, origin, and exploration, with particular focus on critical in situ science at the icy giants. Space Sci. Rev. 216, 18 (2020).

    Article 

    Google Scholar
     

  • Shorttle, O., Jordan, S., Nicholls, H., Lichtenberg, T. & Bower, D. J. Distinguishing oceans of water from magma on mini-Neptune K2-18b. Astrophys. J. Lett. 962, L8 (2024).

    Article 

    Google Scholar
     

  • Coles, S. W., Mangaud, E., Frenkel, D. & Rotenberg, B. Reduced variance analysis of molecular dynamics simulations by linear combination of estimators. J. Chem. Phys. 154 191101 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Onel, S. & Ando, T. Application of a simple subregular solution model to the computation of phase boundaries and free dendritic growth in the Ag-Cu system. Acta Mater. 113, 109–115 (2016).

    Article 

    Google Scholar
     

  • Lupis, C. H. P. Chemical Thermodynamics of Materials (North-Holland, 1983).

  • Stixrude, L. Simulation results for the paper: core-envelope miscibility in sub-Neptunes and super-Earths. Zenodo. https://doi.org/10.5281/zenodo.17716049 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments