Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).
Fulton, B. J. et al. The California-Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).
Valencia, D., O’Connell, R. J. & Sasselov, D. Internal structure of massive terrestrial planets. Icarus 181, 545–554 (2006).
Lopez, E. D. & Fortney, J. J. Understanding the mass-radius relation for sub-Neptunes: radius as a proxy for composition. Astrophys. J. 792, 1 (2014).
Benneke, B. et al. A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds. Nat. Astron. 3, 813–821 (2019).
Ginzburg, S., Schlichting, H. E. & Sari, R. Super-earth atmospheres: self-consistent gas accretion and retention. Astrophys. J. 825, 29 (2016).
Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).
Owen, J. E. & Wu, Y. The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017).
Gupta, A. & Schlichting, H. E. Sculpting the valley in the radius distribution of small exoplanets as a by-product of planet formation: the core-powered mass-loss mechanism. Mon. Not. R. Astron. Soc. 487, 24–33 (2019).
Mordasini, C. Planetary evolution with atmospheric photoevaporation-I. Analytical derivation and numerical study of the evaporation valley and transition from super-Earths to sub-Neptunes. Astron. Astrophys. 638, A52 (2020).
Rogers, J. G. & Owen, J. E. Unveiling the planet population at birth. Mon. Not. R. Astron. Soc. 503, 1526–1542 (2021).
Johnson, J. A. et al. The California-Kepler Survey. II. Precise physical properties of 2025 Kepler planets and their host stars. Astron. J. 154, 108 (2017).
Hayashi, C., Nakazawa, K. & Mizuno, H. Earths melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43, 22–28 (1979).
Young, E. D., Shahar, A. & Schlichting, H. E. Earth shaped by primordial H2 atmospheres. Nature 616, 306–311 (2023).
Bodenheimer, P., Stevenson, D. J., Lissauer, J. J. & D’Angelo, G. New formation models for the Kepler-36 system. Astrophys. J. 868, 138 (2018).
Tang, Y. et al. Reassessing sub-Neptune structure, radii, and thermal evolution. Astrophys. J. 989, 28 (2025).
Brygoo, S. et al. Evidence of hydrogen-helium immiscibility at Jupiter-interior conditions. Nature 593, 2021–521 (2021).
Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345, 38–48 (2012).
Markham, S., Guillot, T. & Stevenson, D. Convective inhibition with an ocean. I. Supercritical cores on sub-Neptunes/super-Earths. Astron. Astrophys. 665, A12 (2022).
Xiao, B. & Stixrude, L. Critical vaporization of MgSiO3. Proc. Natl Acad. Sci. USA 115, 5371–5376 (2018).
Insixiengmay, L. & Stixrude, L. MgO miscibility in liquid iron. Earth Planet. Sci. Lett. 654, 119242 (2025).
Widom, B. Potential-distribution theory and the statistical-mechanics of fluids. J. Phys. Chem. 86, 869–872 (1982).
Willard, A. P. & Chandler, D. Instantaneous Liquid Interfaces. J. Phys. Chem. B 114, 1954–1958 (2010).
Chachan, Y. & Stevenson, D. J. On the role of dissolved gases in the atmosphere retention of low-mass low-density planets. Astrophys. J. 854, 21 (2018).
Kite, E. S., Fegley, B. Jr, Schaefer, L. & Ford, E. B. Superabundance of exoplanet sub-Neptunes explained by fugacity crisis. Astrophys. J. Lett. 887, L33 (2019).
Kite, E. S., Fegley, B., Schaefer, L. & Ford, E. B. Atmosphere origins for exoplanet sub-Neptunes. Astrophys. J. 891, 111 (2020).
Schlichting, H. E. & Young, E. D. Chemical equilibrium between cores, mantles, and atmospheres of super-Earths and sub-Neptunes and implications for their compositions, interiors, and evolution. Planet Sci. J. 3, 127 (2022).
Paonita, A. Noble gas solubility in silicate melts: a review of experimentation and theory, and implications regarding magma degassing processes. Ann. Geophys. 48, 647–669 (2005).
Steinmeyer, M.-L. & Johansen, A. Vapor equilibrium models of accreting rocky planets demonstrate direct core growth by pebble accretion. Astron. Astrophys. 683, A217 (2024).
Brouwers, M. G., Vazan, A. & Ormel, C. W. How cores grow by pebble accretion. I. Direct core growth. Astron. Astrophys. 611, A65 (2018).
Ormel, C. W., Vazan, A. & Brouwers, M. G. How planets grow by pebble accretion. III. Emergence of an interior composition gradient. Astron. Astrophys. 647, A175 (2021).
Misener, W., Schlichting, H. E. & Young, E. D. Atmospheres as windows into sub-Neptune interiors: coupled chemistry and structure of hydrogen-silane-water envelopes. Mon. Not. R. Astron. Soc. 524, 981–992 (2023).
Manning, C. E. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 223, 1–16 (2004).
Mookherjee, M., Stixrude, L. & Karki, B. Hydrous silicate melt at high pressure. Nature 452, 983–986 (2008).
Kovačević, T., González-Cataldo, F., Stewart, S. T. & Militzer, B. Miscibility of rock and ice in the interiors of water worlds. Sci. Rep. 12, 13055 (2022).
Young, E. D., Stixrude, L., Rogers, J. G., Schlichting, H. E. & Marcum, S. P. Equilibria of sub-Neptunes and super-Earths. Planet. Sci. J. 5, 268 (2024).
McQuarrie, N., Stock, J. M., Verdel, C. & Wernicke, B. Cenozoic evolution of Neotethys and implications for the causes of plate motions. Geophys. Res. Lett. 30, 2036 (2003).
Shinozaki, A. et al. Preferential dissolution of SiO2 from enstatite to H2 fluid under high pressure and temperature. Phys. Chem. Miner. 43, 277–285 (2016).
Stolper, E. The speciation of water in silicate melts. Geochim. Cosmochim. Acta 46, 2609–2620 (1982).
Benneke, B. et al. JSWT reveals CH4, CO2, and H2O in a metal-rich miscible atmosphere on a two-Earth-radius exoplanet. Preprint at https://doi.org/10.48550/arXiv.2403.03325 (2024).
Beatty, T. G. et al. Sulfur dioxide and other molecular species in the atmosphere of the sub-Neptune GJ 3470 b. Astrophys. J. Lett. 970, L10 (2024).
Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “steam world” atmosphere of GJ 9827 d. Astrophys. J. Lett. 974, L10 (2024).
Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).
Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).
Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores. Nat. Astron. 8, 463–471 (2024).
Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, 2021, e2020JE006639 (2021).
McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Werlen, A., Dorn, C., Schlichting, H. E., Grimm, S. L. & Young, E. D. Atmospheric C/O ratios of sub-Neptunes with magma oceans: homemade rather than inherited. Astrophys. J. Lett. 988, L55 (2025).
Zilinskas, M., Miguel, Y., van Buchem, C. P. A. & Snellen, I. A. G. Observability of silicates in volatile atmospheres of super-Earths and sub-Neptunes: exploring the edge of the evaporation desert. Astron. Astrophys. 671, A138 (2023).
Faherty, J. K. et al. JWST detects silane in a cold low-metallicity world. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-5507891/v1 (2025).
Ito, Y., Kimura, T., Ohno, K., Fujii, Y. & Ikoma, M. Monosilane worlds: sub-Neptunes with atmospheres shaped by reduced magma oceans. Astrophys. J. 987, 174 (2025).
Hakim, K., Bower, D. J., Seidler, F. & Sossi, P. A. Silane-methane competition in sub-Neptune atmospheres as a diagnostic of metallicity and magma oceans. Preprint at https://arxiv.org/abs/2508.19235 (2025).
Lee, E. J. & Chiang, E. To cool is to accrete: analytic scalings for nebular accretion of planetary atmospheres. Astrophys. J. 811, 41 (2015).
Misener, W. & Schlichting, H. E. To cool is to keep: residual H/He atmospheres of super-Earths and sub-Neptunes. Mon. Not. R. Astron. Soc. 503, 5658–5674 (2021).
Vazan, A., Ormel, C. W. & Brouwers, M. G. How planets grow by pebble accretion V. Silicate rainout delays the contraction of sub-Neptunes. Astron. Astrophys. 687, A262 (2024).
Leconte, J., Selsis, F., Hersant, F. & Guillot, T. Condensation-inhibited convection in hydrogen-rich atmospheres: stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Neptune. Astron. Astrophys. 598, A98 (2017).
Kite, E. S. & Schaefer, L. Water on hot rocky exoplanets. Astrophys. J. Lett. 909, L22 (2021).
Rogers, J. G., Schlichting, H. E. & Young, E. D. Fleeting but not forgotten: the imprint of escaping hydrogen atmospheres on super-Earth interiors. Astrophys. J. 970, 47 (2024).
Presnall, D. C. & Gasparik, T. Melting of enstatite (MgSiO3) from 10 to 16.5 GPa and the forsterite (Mg2SiO4) – majorite (MgSiO3) eutectic at 16.5 GPa: implications for the origin of the mantle. J. Geophys. Res. 95, 15771–15777 (1990).
Gupta, A., Stixrude, L. & Schlichting, H. E. The miscibility of hydrogen and water in planetary atmospheres and interiors. Astrophys. J. Lett. 982, L35 (2025).
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Mermin, N. D. Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441–A1443 (1965).
Nosé, S. A Unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).
Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).
Hopkins, C. W., Le Grand, S., Walker, R. C. & Roitberg, A. E. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 11, 1864–1874 (2015).
Buff, F. P., Lovett, R. A. & Stillinger, F. H. Jr Interfacial density profile for fluids in critical region. Phys. Rev. Lett. 15, 621–623 (1965).
Parrinello, M. & Rahman, A. Crystal structure and pair potentials: a molecular dynamics study. Phys. Rev. Lett. 45, 1196–1199 (1980).
Parrinello, M. & Rahman, A. Polymorphic phase transitions in single-crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7290 (1981).
Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon Press, 1989).
Hoover, W. G., Ladd, A. J. C. & Moran, B. High-strain-rate plastic-flow studied via non-equilibrium molecular-dynamics. Phys. Rev. Lett. 48, 1818–1820 (1982).
Evans, D. J. Computer “experiment” for non-linear thermodynamics of Couette-flow. J. Chem. Phys. 78, 3297–3302 (1983).
Desjarlais, M. P. First-principles calculation of entropy for liquid metals. Phys. Rev. E 88, 062145 (2013).
Wilson, A. & Stixrude, L. Entropy, dynamics, and freezing of CaSiO3 liquid. Geochim. Cosmochim. Acta 302, 1–17 (2021).
Flyvbjerg, H. & Petersen, H. G. Error-estimates on averages of correlated data. J. Chem. Phys. 91, 461–466 (1989).
Dragulet, F. & Stixrude, L. Electrical and thermal conductivity of Earth’s iron-enriched basal magma ocean. Proc. Natl Acad. Sci. USA. 122, e2509771122 (2025).
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).
Atreya, S. K. et al. Deep atmosphere composition, structure, origin, and exploration, with particular focus on critical in situ science at the icy giants. Space Sci. Rev. 216, 18 (2020).
Shorttle, O., Jordan, S., Nicholls, H., Lichtenberg, T. & Bower, D. J. Distinguishing oceans of water from magma on mini-Neptune K2-18b. Astrophys. J. Lett. 962, L8 (2024).
Coles, S. W., Mangaud, E., Frenkel, D. & Rotenberg, B. Reduced variance analysis of molecular dynamics simulations by linear combination of estimators. J. Chem. Phys. 154 191101 (2021).
Onel, S. & Ando, T. Application of a simple subregular solution model to the computation of phase boundaries and free dendritic growth in the Ag-Cu system. Acta Mater. 113, 109–115 (2016).
Lupis, C. H. P. Chemical Thermodynamics of Materials (North-Holland, 1983).
Stixrude, L. Simulation results for the paper: core-envelope miscibility in sub-Neptunes and super-Earths. Zenodo. https://doi.org/10.5281/zenodo.17716049 (2025).

