Thursday, January 22, 2026
No menu items!
HomeNatureSymmetry, microscopy and spectroscopy signatures of altermagnetism

Symmetry, microscopy and spectroscopy signatures of altermagnetism

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022). This paper delineated altermagnetism as an exclusively distinct spin-group symmetry class of d-, g– or i-wave spin-ordered phases.


    Google Scholar
     

  • Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022). This perspective outlined envisaged research directions of altermagnetism.


    Google Scholar
     

  • Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020). This paper predicted that an interplay of crystal and collinear spin orders in a class of materials can lead to a time-reversal-symmetry-breaking spin-split electronic structure and, when spin–orbit coupling is included, to the anomalous Hall effect.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jungwirth, T. et al. Altermagnetism: an unconventional spin-ordered phase of matter. Newton 1, 100162 (2025).

    Article 

    Google Scholar
     

  • Mazin, I. I. Notes on altermagnetism and superconductivity. AAPPS Bull. 35, 18 (2025). These informal notes, originally posted as a preprint on the arXiv server, aimed to stimulate the exploration of the interplay of altermagnetism with superconductivity.

    Article 

    Google Scholar
     

  • Beenakker, C. W. J. & Vakhtel, T. Phase-shifted Andreev levels in an altermagnet Josephson junction. Phys. Rev. B 108, 075425 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mazin, I., González-Hernández, R. & Šmejkal, L. Induced monolayer altermagnetism in MnP(S,Se)3 and FeSe. Preprint at http://arxiv.org/abs/2309.02355 (2023).

  • Brekke, B., Brataas, A. & Sudbø, A. Two-dimensional altermagnets: superconductivity in a minimal microscopic model. Phys. Rev. B 108, 224421 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y.-X. & Liu, C.-C. Majorana corner modes and tunable patterns in an altermagnet heterostructure. Phys. Rev. B 108, 205410 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, D., Zhuang, Z.-Y., Wu, Z. & Yan, Z. Topological superconductivity in two-dimensional altermagnetic metals. Phys. Rev. B 108, 184505 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sumita, S., Naka, M. & Seo, H. Fulde–Ferrell–Larkin–Ovchinnikov state induced by antiferromagnetic order in k-type organic conductors. Phys. Rev. Res. 5, 043171 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ghorashi, S. A. A., Hughes, T. L. & Cano, J. Altermagnetic routes to Majorana modes in zero net magnetization. Phys. Rev. Lett. 133, 106601 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Papaj, M. Andreev reflection at the altermagnet-superconductor interface. Phys. Rev. B 108, L060508 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wei, M. et al. Gapless superconducting state and mirage gap in altermagnets. Phys. Rev. B 109, L201404 (2023).

    Article 

    Google Scholar
     

  • Zhang, S.-B., Hu, L.-H. & Neupert, T. Finite-momentum Cooper pairing in proximitized altermagnets. Nat. Commun. 15, 1801 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Q. & Sun, Q.-F. Orientation-dependent Josephson effect in spin-singlet superconductor/altermagnet/spin-triplet superconductor junctions. Phys. Rev. B 109, 024517 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface-dependent quantum geometry. Phys. Rev. B 110, 205111 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Mæland, K., Brekke, B. & Sudbø, A. Many-body effects on superconductivity mediated by double-magnon processes in altermagnets. Phys. Rev. B 109, 134515 (2024).

    Article 

    Google Scholar
     

  • Chakraborty, D. & Black-Schaffer, A. M. Zero-field finite-momentum and field-induced superconductivity in altermagnets. Phys. Rev. B 110, L060508 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Banerjee, S. & Scheurer, M. S. Altermagnetic superconducting diode effect. Phys. Rev. B 110, 024503 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jeschke, H. O., Shimizu, M. & Mazin, I. I. CuAg(SO4)2: a doubly strongly correlated altermagnetic three-dimensional analog of the parent compounds of high-Tc cuprates. Phys. Rev. B 109, L220412 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Verbeek, X. H., Urru, A. & Spaldin, N. A. Hidden orders and (anti-)magnetoelectric effects in Cr2O3 and Fe2O3. Phys. Rev. Res. 5, L042018 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bernardini, F., Fiebig, M. & Cano, A. Ruddlesden–Popper and perovskite phases as a material platform for altermagnetism. J. Appl. Phys. 137, 103903 (2025).

  • Zyuzin, A. A. Magnetoelectric effect in superconductors with d-wave magnetization. Phys. Rev. B 109, L220505 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sim, G. & Knolle, J. Pair density waves and supercurrent diode effect in altermagnets. Phys. Rev. B 112, L020502 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hu, J.-X., Matsyshyn, O. & Song, J. C. W. Nonlinear superconducting magnetoelectric effect. Phys. Rev. Lett. 134, 026001 (2025).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Šmejkal, L. Altermagnetic multiferroics and altermagnetoelectric effect. Preprint at http://arxiv.org/abs/2411.19928 (2024). This paper and refs. 28 and 29 theoretically predicted an interplay of altermagnetism with ferroelectricity.

  • Duan, X. et al. Antiferroelectric altermagnets: antiferroelectricity alters magnets. Phys. Rev. Lett. 134, 106801 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gu, M. et al. Ferroelectric switchable altermagnetism. Phys. Rev. Lett. 134, 106802 (2024).

    Article 

    Google Scholar
     

  • Parthenios, N. et al. Spin and pair density waves in two-dimensional altermagnetic metals. Phys. Rev. B 112, 214410 (2025).

  • Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022). This paper reviewed the anomalous Hall effect in altermagnets and non-collinear compensated magnets.

    Article 

    Google Scholar
     

  • Bai, L. et al. Altermagnetism: exploring new frontiers in magnetism and spintronics. Adv. Funct. Mater. 34, 2409327 (2024).

  • Liu, Q., Dai, X. & Blügel, S. Different facets of unconventional magnetism. Nat. Phys. 21, 329–331 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Song, C. et al. Altermagnets as a new class of functional materials. Nat. Rev. Mater. 10, 473–485 (2025).

  • Jungwirth, T. et al. Altermagnetic spintronics. Preprint at http://arxiv.org/abs/2508.09748 (2025).

  • Liu, P., Li, J., Han, J., Wan, X. & Liu, Q. Spin-group symmetry in magnetic materials with negligible spin–orbit coupling. Phys. Rev. X 12, 21016 (2022). This paper discusses spin space-group symmetries of magnetic materials and corresponding band degeneracies and emergent topological phases.

    CAS 

    Google Scholar
     

  • Litvin, D. B. & Opechowski, W. Spin groups. Physica 76, 538–554 (1974). This paper describes the mathematical spin-group formalism.

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Andreev, A. & Grishchuk, I. Spin nematics. Sov. Phys. JETP 60, 267 (1984).


    Google Scholar
     

  • Gor’kov, L. P. & Sokol, A. Nontrivial magnetic order: localized versus itinerant systems. Phys. Rev. Lett. 69, 2586–2589 (1992).

    Article 
    PubMed 

    Google Scholar
     

  • Leggett, A. J. Nobel Lecture: Superfluid 3-He: the early days as seen by a theorist. Rev. Mod. Phys. 76, 999 (2004). This paper reviews the superfluid phase of 3He, including the spontaneous breaking of real-space and spin-space rotation symmetries.

    Article 
    CAS 

    Google Scholar
     

  • Moessner, R. & Moore, J. E. Topological Phases of Matter (Cambridge Univ. Press, 2021).

  • Strange, P. Relativistic Quantum Mechanics 1 edn (Cambridge Univ. Press, Cambridge, 1998).

  • Winkler, R. Spin–Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems Springer Tracts in Modern Physics Vol. 191 (Springer, 2003).

  • Landau, L. & Lifshitz, E. Electrodynamics of Continuous Media 2 edn, Course of Theoretical Physics Vol. 8 (Pergamon Press, 1965).

  • Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article 

    Google Scholar
     

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article 

    Google Scholar
     

  • Franz, M. & Molenkamp, L. (eds) Contemporary Concepts of Condensed Matter Science Topological Insulators Vol. 6 (Elsevier, 2013).

  • Murakami, S. & Yokoyama, T. Quantum Spin Hall Effect and Topological Insulators Vol. 1 (Oxford Univ. Press, 2017).

  • Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Elcoro, L. et al. Magnetic topological quantum chemistry. Nat. Commun. 12, 5965 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazin, I. I., Koepernik, K., Johannes, M. D., González-Hernández, R. & Šmejkal, L. Prediction of unconventional magnetism in doped FeSb2. Proc. Natl Acad. Sci. USA 118, e2108924118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn5Si d-wave altermagnet candidate. Nat. Commun. 15, 4961 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šmejkal, L., Hellenes, A. B., González-Hernández, R., Sinova, J. & Jungwirth, T. Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin–momentum coupling. Phys. Rev. X 12, 011028 (2022).


    Google Scholar
     

  • Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Šmejkal, L. et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 131, 256703 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, X. et al. Unconventional magnons in collinear magnets dictated by spin space groups. Nature 640, 349–354 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hariki, A. et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett. 132, 176701 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hellenes, A. B. et al. P-wave magnets. Preprint at http://arxiv.org/abs/2309.01607 (2023).

  • Hellenes, A. B., Jungwirth, T., Sinova, J. & Šmejkal, L. Exchange spin–orbit coupling and unconventional p-wave magnetism. Preprint at http://arxiv.org/abs/2309.01607v1 (2023).

  • McClarty, P. A. & Rau, J. G. Landau theory of altermagnetism. Phys. Rev. Lett. 132, 176702 (2023).

    Article 
    MathSciNet 

    Google Scholar
     

  • Smolyanyuk, A., Šmejkal, L. & Mazin, I. I. A tool to check whether a symmetry-compensated collinear magnetic material is antiferro- or altermagnetic. SciPost Phys. Codebases 30, 1–16 (2024).


    Google Scholar
     

  • Shinohara, K. et al. Algorithm for spin symmetry operation search. Acta Crystallogr. A 80, 94–103 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Watanabe, H., Shinohara, K., Nomoto, T., Togo, A. & Arita, R. Symmetry analysis with spin crystallographic groups: disentangling effects free of spin–orbit coupling in emergent electromagnetism. Phys. Rev. B 109, 094438 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Enumeration of spin-space groups: toward a complete description of symmetries of magnetic orders. Phys. Rev. X 14, 031039 (2024).

    CAS 

    Google Scholar
     

  • Zhu, H., Li, J., Chen, X., Yu, Y. & Liu, Q. Magnetic geometry induced quantum geometry and nonlinear transports. Nat. Commun. 16, 4882 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Enumeration and representation theory of spin space groups. Phys. Rev. X 14, 031038 (2024).

    CAS 

    Google Scholar
     

  • Schiff, H., Corticelli, A., Guerreiro, A., Romhányi, J. & McClarty, P. The crystallographic spin point groups and their representations. SciPost Phys. 18, 109 (2025).

  • Xiao, Z., Zhao, J., Li, Y., Shindou, R. & Song, Z.-D. Spin space groups: full classification and applications. Phys. Rev. X 14, 031037 (2024).

    CAS 

    Google Scholar
     

  • Litvin, D. B. Magnetic Group Tables (IUCr, 2013). http://www.iucr.org/publ/978-0-9553602-2-0.

  • Berlijn, T. et al. Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 118, 077201 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Z. H. et al. Anomalous antiferromagnetism in metallic RuO2 determined by resonant X-ray scattering. Phys. Rev. Lett. 122, 017202 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Magnetic properties of RuO2 and charge-magnetic interference in Bragg diffraction of circularly polarized X-rays. Phys. Rev. B 105, 014403 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Occhialini, C. A. et al. Local electronic structure of rutile RuO2. Phys. Rev. Res. 3, 033214 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bose, A. et al. Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bai, H. et al. Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karube, S. et al. Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Magnetic structure of RuO2 in view of altermagnetism. Phys. Rev. B 108, L121103 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Inverse altermagnetic spin splitting effect-induced terahertz emission in RuO2. Adv. Opt. Mater. 11, 2300177 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv. 10, 31 (2024).

    Article 

    Google Scholar
     

  • Smolyanyuk, A., Mazin, I. I., Garcia-Gassull, L. & Valentí, R. Fragility of the magnetic order in the prototypical altermagnet RuO2. Phys. Rev. B 109, 134424 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO2. Preprint at http://arxiv.org/abs/2402.04995 (2024).

  • Keßler, P. et al. Absence of magnetic order in RuO2: insights from μSR spectroscopy and neutron diffraction. npj Spintronics 2, 50 (2024).

  • Li, Z. et al. Fully field-free spin-orbit torque switching induced by spin splitting effect in altermagnetic RuO2. Adv. Mater. 37, 2416712 (2025).

  • Wenzel, M. et al. Fermi-liquid behavior of nonaltermagnetic RuO2. Phys. Rev. B 111, L041115 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Jeong, S. G. et al. Altermagnetic polar metallic phase in ultra-thin epitaxially-strained RuO2 films. Preprint at http://arxiv.org/abs/2405.05838 (2024).

  • Hiraishi, M. et al. Nonmagnetic ground state in RuO2 revealed by muon spin rotation. Phys. Rev. Lett. 132, 166702 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • López-Moreno, S., Romero, A. H., Mejía-López, J. & Muñoz, A. First-principles study of pressure-induced structural phase transitions in MnF2. Phys. Chem. Chem. Phys. 18, 33250–33263 (2016). This paper reported density-functional-theory calculations of non-relativistic band structure of MnF2.

    Article 
    PubMed 

    Google Scholar
     

  • Noda, Y., Ohno, K. & Nakamura, S. Momentum-dependent band spin splitting in semiconducting MnO2: a density functional calculation. Phys. Chem. Chem. Phys. 18, 13294–13303 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayami, S., Yanagi, Y. & Kusunose, H. Momentum-dependent spin splitting by collinear antiferromagnetic ordering. J. Phys. Soc. Jpn 88, 123702 (2019).

    Article 

    Google Scholar
     

  • Yuan, L.-D., Wang, Z., Luo, J.-W., Rashba, E. I. & Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z antiferromagnets. Phys. Rev. B 102, 014422 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bhowal, S. & Spaldin, N. A. Ferroically ordered magnetic octupoles in d-wave altermagnets. Phys. Rev. X 14, 011019 (2024).

    CAS 

    Google Scholar
     

  • Jaeschke-Ubiergo, R. et al. Atomic altermagnetism. Preprint at https://arxiv.org/pdf/2503.10797 (2025).

  • Lovesey, S. W., Khalyavin, D. D. & van der Laan, G. Templates for magnetic symmetry and altermagnetism in hexagonal MnTe. Phys. Rev. B 108, 174437 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mazin, I. I. Altermagnetism in MnTe: origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 107, L100418 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature 626, 517–522 (2024). This paper and refs. 99–101 reported experimental spectroscopic observations of a g-wave altermagnetic band structure of MnTe.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett. 132, 036702 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osumi, T. et al. Observation of a giant band splitting in altermagnetic MnTe. Phys. Rev. B 109, 115102 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hajlaoui, M. et al. Temperature dependence of relativistic valence band splitting induced by an altermagnetic phase transition. Adv. Mater. 36, 2314076 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Aoyama, T. & Ohgushi, K. Piezomagnetic properties in altermagnetic MnTe. Phys. Rev. Mater. 8, L041402 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kluczyk, K. P. et al. Coexistence of anomalous Hall effect and weak magnetization in a nominally collinear antiferromagnet MnTe. Phys. Rev. B 110, 155201 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun. 15, 2116 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, G. et al. Three-dimensional mapping of the altermagnetic spin splitting in CrSb. Nat. Commun. 16, 1442 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, J. et al. Large band splitting in g-wave altermagnet CrSb. Phys. Rev. Lett. 133, 206401 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. Topological Weyl altermagnetism in CrSb. Commun. Phys. 8, 311 (2025).

  • Lu, W. et al. Signature of topological surface bands in altermagnetic Weyl semimetal CrSb. Nano Lett. 25, 7343–7350 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, M. et al. Observation of spin splitting in room-temperature metallic antiferromagnet CrSb. Adv. Sci. 11, 2406529 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dale, N. et al. Non-relativistic spin splitting above and below the Fermi level in a g-wave altermagnet. Preprint at http://arxiv.org/abs/2411.18761 (2024).

  • Liu, Z., Ozeki, M., Asai, S., Itoh, S. & Masuda, T. Chiral-split magnon in altermagnetic MnTe. Phys. Rev. Lett. 133, 156702 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, B. et al. A metallic room-temperature d-wave altermagnet. Nat. Phys. 21, 754–759 (2025). This paper and ref. 113 reported experimental spectroscopic observations of a d-wave altermagnetic band structure.

    Article 
    CAS 

    Google Scholar
     

  • Zhang, F. et al. Crystal-symmetry-paired spin–valley locking in a layered room-temperature metallic altermagnet candidate. Nat. Phys. 21, 760–767 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Antonenko, D. S., Fernandes, R. M. & Venderbos, J. W. F. Mirror Chern bands and Weyl nodal loops in altermagnets. Phys. Rev. Lett. 134, 096703 (2025). This paper reported a theoretical study of topological phenomena in 2D (Lieb lattice) and 3D minimal models of altermagnetism.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaushal, N. & Franz, M. Altermagnetism in modified Lieb lattice Hubbard model. Phys. Rev. Lett. 135, 156502 (2025).

  • Wei, C. C. et al. La2O3Mn2Se2: a correlated insulating layered d-wave altermagnet. Phys. Rev. Mater. 9, 24402 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Maharaj, D. D. et al. Octupolar versus Néel order in cubic 5d2 double perovskites. Phys. Rev. Lett. 124, 87206 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Néel, L. Magnetism and local molecular field. Science 174, 985–992 (1971).

    Article 
    PubMed 

    Google Scholar
     

  • Chakraborty, A., González Hernández, R., Šmejkal, L. & Sinova, J. Strain-induced phase transition from antiferromagnet to altermagnet. Phys. Rev. B 109, 144421 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Yu, J. & Liu, C.-C. Twisted magnetic van der Waals bilayers: an ideal platform for altermagnetism. Phys. Rev. Lett. 133, 206702 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leeb, V., Mook, A., Šmejkal, L. & Knolle, J. Spontaneous formation of altermagnetism from orbital ordering. Phys. Rev. Lett. 132, 236701 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernandes, R. M., de Carvalho, V. S., Birol, T. & Pereira, R. G. Topological transition from nodal to nodeless Zeeman splitting in altermagnets. Phys. Rev. B 109, 024404 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Das, S., Suri, D. & Soori, A. Transport across junctions of altermagnets with normal metals and ferromagnets. J. Phys. Condensed Matter 35, 435302 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Maier, T. A. & Okamoto, S. Weak-coupling theory of neutron scattering as a probe of altermagnetism. Phys. Rev. B 108, L100402 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sato, T., Haddad, S., Fulga, I. C., Assaad, F. F. & van den Brink, J. Altermagnetic anomalous Hall effect emerging from electronic correlations. Phys. Rev. Lett. 133, 086503 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Roig, M., Kreisel, A., Yu, Y., Andersen, B. M. & Agterberg, D. F. Minimal models for altermagnetism. Phys. Rev. B 110, 144412 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bose, A., Vadnais, S. & Paramekanti, A. Altermagnetism and superconductivity in a multiorbital tJ model. Phys. Rev. B 110, 205120 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ferrari, F. & Valentí, R. Altermagnetism on the Shastry–Sutherland lattice. Phys. Rev. B 110, 205140 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Rooj, S., Saxena, S. & Ganguli, N. Altermagnetism in the orthorhombic Pnm structure through group theory and DFT calculations. Phys. Rev. B 111, 014434 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Töpfer, J. & Goodenough, J. LaMnO3+δ revisited. J. Solid State Chem. 130, 117–128 (1997).

    Article 

    Google Scholar
     

  • Chen, H., Niu, Q. & Macdonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014). This paper predicted the anomalous Hall effect in a non-collinear compensated magnet.

    Article 
    PubMed 

    Google Scholar
     

  • Zhou, J. et al. Predicted quantum topological Hall effect and noncoplanar antiferromagnetism in K0.5RhO2. Phys. Rev. Lett. 116, 256601 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Feng, W. et al. Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets. Nat. Commun. 11, 118 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, K.-H., Hariki, A., Lee, K.-W. & Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Y. et al. Spin-split collinear antiferromagnets: a large-scale ab-initio study. Mater. Today Phys. 32, 100991 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ma, H.-Y. et al. Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Egorov, S. A. & Evarestov, R. A. Colossal spin splitting in the monolayer of the collinear antiferromagnet MnF2. J. Phys. Chem. Lett. 12, 2363–2369 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, Q., Zhu, Y., Yao, X., Cui, P. & Yang, H. Giant spin-Hall and tunneling magnetoresistance effects based on a two-dimensional nonrelativistic antiferromagnetic metal. Phys. Rev. B 108, 024410 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X., Wang, D., Li, L. & Sanyal, B. Giant spin-splitting and tunable spin-momentum locked transport in room temperature collinear antiferromagnetic semimetallic CrO monolayer. Appl. Phys. Lett. 123, 022402 (2023).

  • Sødequist, J. & Olsen, T. Two-dimensional altermagnets from high throughput computational screening: symmetry requirements, chiral magnons, and spin–orbit effects. Appl. Phys. Lett. 124, 182409 (2024).

    Article 

    Google Scholar
     

  • Zhu, Y.-P. et al. Observation of plaid-like spin splitting in a noncoplanar antiferromagnet. Nature 626, 523–528 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, Y. et al. Multipiezo effect in altermagnetic V2SeTeO monolayer. Nano Lett. 24, 472–478 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wigner, E. Ueber die Operation der Zeitumkehr in der Quantenmechanik. Nachr. Ges. Wiss. Gott. Math. Phys. Kl. 1932, 546–559 (1932).


    Google Scholar
     

  • Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Šmejkal, L., Železný, J., Sinova, J. & Jungwirth, T. Electric control of Dirac quasiparticles by spin–orbit torque in an antiferromagnet. Phys. Rev. Lett. 118, 106402 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article 

    Google Scholar
     

  • Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).

    Article 

    Google Scholar
     

  • Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). This paper reported the experimental observation of the anomalous Hall effect in a non-collinear compensated magnet.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kiyohara, N., Tomita, T. & Nakatsuji, S. Giant anomalous Hall effect in the chiral antiferromagnet Mn3Ge. Phys. Rev. Appl. 5, 064009 (2016).

    Article 

    Google Scholar
     

  • Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Matsuda, T., Kanda, N., Higo, T. & Matsunaga, R. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films. Nat. Commun. 11, 909 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimata, M. et al. X-ray study of ferroic octupole order producing anomalous Hall effect. Nat. Commun. 12, 5582 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakamoto, S. et al. Observation of spontaneous X-ray magnetic circular dichroism in a chiral antiferromagnet. Phys. Rev. B 104, 134431 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Železný, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Železný, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging from a noncollinear magnetic lattice without spin–orbit coupling. New J. Phys. 20, 073028 (2018).

    Article 

    Google Scholar
     

  • Kimata, M. et al. Magnetic and magnetic inverse spin Hall effects in a non-collinear antiferromagnet. Nature 565, 627–630 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, S. et al. Efficient perpendicular magnetization switching by a magnetic spin Hall effect in a noncollinear antiferromagnet. Nat. Commun. 13, 4447 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakatsuji, S. & Arita, R. Topological magnets: functions based on Berry phase and multipoles. Annu. Rev. Condensed Matter Phys. 13, 119–142 (2022).

  • Rimmler, B. H., Pal, B. & Parkin, S. S. P. Non-collinear antiferromagnetic spintronics. Nat. Rev. Mater. 10, 109–127 (2024).

  • Han, J., Yoon, J.-Y., Ohno, H. & Fukami, S. Unconventional responses in non-collinear antiferromagnets. Newton 1, 100012 (2025).

    Article 

    Google Scholar
     

  • Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Ezawa, M. Topological insulators and superconductors based on p-wave magnets: electrical control and detection of a domain wall. Phys. Rev. B 110, 165429 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Sivianes, J., dos Santos, F. J. & Ibañez-Azpiroz, J. Optical signatures of spin symmetries in unconventional magnets. Phys. Rev. Lett. 134, 196907 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chakraborty, A. et al. Highly efficient non-relativistic Edelstein effect in p-wave magnets. Nat. Commun. 16, 7270 (2023).

    Article 

    Google Scholar
     

  • Yu, Y. et al. Odd-parity magnetism driven by antiferromagnetic exchange. Phys. Rev. Lett. 135, 046701 (2025).

  • Wang, M. et al. Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal. Nat. Commun. 14, 8240 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, L. et al. Electrical 180° switching of Néel vector in spin-splitting antiferromagnet. Sci. Adv. 10, eadn0479 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takagi, R. et al. Spontaneous Hall effect induced by collinear antiferromagnetic order at room temperature. Nat. Mater. 24, 63–68 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ray, M. K. et al. Zero-field Hall effect emerging from a non-Fermi liquid in a collinear antiferromagnet V1/3NbS2. Nat. Commun. 16, 3532 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fakhredine, A., Sattigeri, R. M., Cuono, G. & Autieri, C. Interplay between altermagnetism and nonsymmorphic symmetries generating large anomalous Hall conductivity by semi-Dirac points induced anticrossings. Phys. Rev. B 108, 115138 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Fang, Y., Cano, J. & Ghorashi, S. A. A. Quantum geometry induced nonlinear transport in altermagnets. Phys. Rev. Lett. 133, 106701 (2024).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y.-X., Liu, Y. & Liu, C.-C. Creation and manipulation of higher-order topological states by altermagnets. Phys. Rev. B 109, L201109 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, X. et al. Crystal thermal transport in altermagnetic RuO2. Phys. Rev. Lett.s 132, 056701 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Zhan, J., Li, J., Shi, W., Chen, X. Q. & Sun, Y. Coexistence of Weyl semimetal and Weyl nodal loop semimetal phases in a collinear antiferromagnet. Phys. Rev. B 107, 224402 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Nag, J. et al. GdAlSi: an antiferromagnetic topological Weyl semimetal with nonrelativistic spin splitting. Phys. Rev. B 110, 224436 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Parshukov, K., Wiedmann, R. & Schnyder, A. P. Topological responses from gapped Weyl points in 2D altermagnets. Phys. Rev. B 111, 224406 (2025).

  • Rao, P., Mook, A. & Knolle, J. Tunable band topology and optical conductivity in altermagnets. Phys. Rev. B 110, 024425 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Tao, L. L. & Tsymbal, E. Y. Persistent spin texture enforced by symmetry. Nat. Commun. 9, 2763 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, J., Lou, F., Yu, R., Feng, J. S. & Xiang, H. J. Symmetry-protected full-space persistent spin texture in two-dimensional materials. Phys. Rev. B 105, L041404 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bernevig, B. A., Orenstein, J. & Zhang, S. C. Exact SU(2) symmetry and persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97, 236601 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. Q. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 1, 172–177 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann–Franz law. Sci. Adv. 6, eaaz3522 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 12, 572 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh, S. et al. Raman spectroscopic evidence for linearly dispersed nodes and magnetic ordering in the topological semimetal V1/3NbS2. Preprint at http://arxiv.org/abs/2504.04590 (2025).

  • Sun, K., Yao, H., Fradkin, E. & Kivelson, S. A. Topological insulators and nematic phases from spontaneous symmetry breaking in 2D Fermi systems with a quadratic band crossing. Phys. Rev. Lett. 103, 046811 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Steward, C. R. W., Fernandes, R. M. & Schmalian, J. Dynamic paramagnon-polarons in altermagnets. Phys. Rev. B 108, 144418 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • MAGNDATA: A Collection of Magnetic Structures with Portable cif-type Files. https://www.cryst.ehu.es/magndata/.

  • RELATED ARTICLES

    Most Popular

    Recent Comments