Thursday, January 22, 2026
No menu items!
HomeNatureAccretion bursts crystallize silicates in a planet-forming disk

Accretion bursts crystallize silicates in a planet-forming disk

  • Fabian, D., Jäger, C., Henning, T., Dorschner, J. & Mutschke, H. Steps toward interstellar silicate mineralogy. V. Thermal evolution of amorphous magnesium silicates and silica. Astron. Astrophys. 364, 282–292 (2000).

    CAS 

    Google Scholar
     

  • Hallenbeck, S. L., Nuth, J. A. III & Daukantas, P. L. Mid-infrared spectral evolution of amorphous magnesium silicate smokes annealed in vacuum: comparison to cometary spectra. Icarus 131, 198–209 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Hanner, M. S., Lynch, D. K. & Russell, R. W. The 8–13 micron spectra of comets and the composition of silicate grains. Astrophys. J. 425, 274 (1994).

    Article 

    Google Scholar
     

  • Hayward, T. L., Hanner, M. S. & Sekanina, Z. Thermal infrared imaging and spectroscopy of comet Hale-Bopp (C/1995 O1). Astrophys. J. 538, 428–455 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wooden, D. H. Comet grains: their IR emission and their relation to ISm grains. Earth Moon Planets 89, 247–287 (2002).

    Article 

    Google Scholar
     

  • Shinnaka, Y. et al. Mid-infrared spectroscopic observations of comet 17P/Holmes immediately after its great outburst in 2007 October. Astron. J. 156, 242 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y.-H. et al. Young faithful: the eruptions of EC 53 as it cycles through filling and draining the inner disk. Astrophys. J. 903, 5 (2020).

    Article 

    Google Scholar
     

  • Pascucci, I. et al. The nested morphology of disk winds from young stars revealed by JWST/NIRSpec observations. Nat. Astron. 9, 81–89 (2025).

    Article 

    Google Scholar
     

  • Giacalone, S., Teitler, S., Königl, A., Krijt, S. & Ciesla, F. J. Dust transport and processing in centrifugally driven protoplanetary disk winds. Astrophys. J. 882, 33 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J.-E., Bergin, E. A. & Nomura, H. The solar nebula on fire: a solution to the carbon deficit in the inner solar system. Astrophys. J. Lett. 710, L21–L25 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, D. E. et al. Destruction of refractory carbon in protoplanetary disks. Astrophys. J. 845, 13 (2017).

    Article 

    Google Scholar
     

  • Bouwman, J. et al. Processing of silicate dust grains in Herbig Ae/Be systems. Astron. Astrophys. 375, 950–962 (2001).

    Article 
    CAS 

    Google Scholar
     

  • van Boekel, R. et al. Grain growth in the inner regions of Herbig Ae/Be star disks. Astron. Astrophys. 400, L21–L24 (2003).

    Article 

    Google Scholar
     

  • van Boekel, R. et al. A 10 μm spectroscopic survey of Herbig Ae star disks: grain growth and crystallization. Astron. Astrophys. 437, 189–208 (2005).

    Article 

    Google Scholar
     

  • Juhász, A. et al. Dust evolution in protoplanetary disks around Herbig Ae/Be stars—the Spitzer view. Astrophys. J. 721, 431–455 (2010).

    Article 

    Google Scholar
     

  • Meeus, G., Sterzik, M., Bouwman, J. & Natta, A. Mid-IR spectroscopy of T Tauri stars in Chamealeon I: evidence for processed dust at the earliest stages. Astron. Astrophys. 409, L25–L29 (2003).

    Article 

    Google Scholar
     

  • Ábrahám, P. et al. Episodic formation of cometary material in the outburst of a young Sun-like star. Nature 459, 224–226 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Olofsson, J. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. IV. Crystalline silicates. Astron. Astrophys. 507, 327–345 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Furlan, E. et al. The Spitzer infrared spectrograph survey of T Tauri Stars in Taurus. Astrophys. J. Suppl. Ser. 195, 3 (2011).

    Article 

    Google Scholar
     

  • Jang, H. et al. Dust mineralogy and variability of the inner PDS 70 disk: insights from JWST/MIRI MRS and Spitzer IRS observations. Astron. Astrophys. 691, A148 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Apai, D. et al. The onset of planet formation in brown dwarf disks. Science 310, 834–836 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Raymond, S. N. & Morbidelli, A. in Demographics of Exoplanetary Systems, Lecture Notes of the 3rd Advanced School on Exoplanetary Science (eds Biazzo, K. et al.) Vol. 466 of Astrophysics and Space Science Library, 3–82 (Springer, 2022).

  • Nuth, J. A. III & Johnson, N. M. Crystalline silicates in comets: how did they form? Icarus 180, 243–250 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Maaskant, K. M. et al. Location and sizes of forsterite grains in protoplanetary disks. Interpretation from the Herschel DIGIT programme. Astron. Astrophys. 574, A140 (2015).

    Article 

    Google Scholar
     

  • Pilipp, W., Hartquist, T. W., Morfill, G. E. & Levy, E. H. Chondrule formation by lightning in the protosolar nebula? Astron. Astrophys. 331, 121–146 (1998).

    CAS 

    Google Scholar
     

  • Harker, D. E. & Desch, S. J. Annealing of silicate dust by nebular shocks at 10 au. Astrophys. J. Lett. 565, L109–L112 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Bae, J., Hartmann, L., Zhu, Z. & Nelson, R. P. Accretion outbursts in self-gravitating protoplanetary disks. Astrophys. J. 795, 61 (2014).

    Article 

    Google Scholar
     

  • Park, W. et al. Quantifying variability of young stellar objects in the mid-infrared over 6 years with the near-Earth object wide-field infrared survey explorer. Astrophys. J. 920, 132 (2021).

    Article 

    Google Scholar
     

  • Sicilia-Aguilar, A. et al. The long-lived disks in the η Chamaeleontis cluster. Astrophys. J. 701, 1188–1203 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Oliveira, I. et al. On the evolution of dust mineralogy, from protoplanetary disks to planetary systems. Astrophys. J. 734, 51 (2011).

    Article 

    Google Scholar
     

  • Quanz, S. P. et al. Evolution of dust and ice features around FU Orionis objects. Astrophys. J. 668, 359–383 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y.-L. et al. CORINOS. I. JWST/MIRI spectroscopy and imaging of a Class 0 protostar IRAS 15398–3359. Astrophys. J. Lett. 941, L13 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J.-E. et al. The ice composition in the disk around V883 Ori revealed by its stellar outburst. Nat. Astron. 3, 314–319 (2019).

    Article 

    Google Scholar
     

  • Lee, J.-E. et al. Complex organic molecules in a very young hot Corino, HOPS 373SW. Astrophys. J. 956, 43 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J.-E. et al. A natural laboratory for astrochemistry: the variable protostar B335. Astrophys. J. Lett. 978, L3 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Muzerolle, J., Furlan, E., Flaherty, K., Balog, Z. & Gutermuth, R. Pulsed accretion in a variable protostar. Nature 493, 378–380 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoo, H. et al. The JCMT Transient Survey: detection of submillimeter variability in a class I protostar EC 53 in Serpens Main. Astrophys. J. 849, 69 (2017).

    Article 

    Google Scholar
     

  • Ortiz-León, G. N. et al. The Gould’s Belt Distances Survey (GOBELINS). I. Trigonometric parallax distances and depth of the Ophiuchus complex. Astrophys. J. 834, 141 (2017).

    Article 

    Google Scholar
     

  • Hodapp, K. W. Proper motions of H2 jets and variability of young stars in the Serpens NW region. Astron. J. 118, 1338–1346 (1999).

    Article 

    Google Scholar
     

  • Hodapp, K. W., Chini, R., Watermann, R. & Lemke, R. Eruptive variable stars and outflows in Serpens NW. Astrophys. J. 744, 56 (2012).

    Article 

    Google Scholar
     

  • Francis, L. et al. Accretion burst echoes as probes of protostellar environments and episodic mass assembly. Astrophys. J. 937, 29 (2022).

    Article 

    Google Scholar
     

  • Baek, G. et al. Radiative transfer modeling of EC 53: an episodically accreting class I young stellar object. Astrophys. J. 895, 27 (2020).

    Article 

    Google Scholar
     

  • Lee, S., Lee, J.-E., Aikawa, Y., Herczeg, G. & Johnstone, D. The circumstellar environment around the embedded protostar EC 53. Astrophys. J. 889, 20 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bonnell, I. & Bastien, P. A binary origin for FU Orionis stars. Astrophys. J. Lett. 401, L31 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Nayakshin, S. & Lodato, G. Fu Ori outbursts and the planet-disc mass exchange. Mon. Not. R. Astron. Soc. 426, 70–90 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jang, H., Waters, R., Kamp, I. & Dullemond, C. P. Spatial distribution of crystalline silicates in protoplanetary disks: How to interpret mid-infrared observations. Astron. Astrophys. 687, A275 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Dominik, C., Min, M. & Tazaki, R. OpTool: command-line driven tool for creating complex dust opacities. Astrophysics Source Code Library, record ascl:2104.010 (ASCL, 2021).

  • Olofsson, J. et al. C2D Spitzer-IRS spectra of disks around T Tauri stars. V. Spectral decomposition. Astron. Astrophys. 520, A39 (2010).

    Article 

    Google Scholar
     

  • Lu, C. X. et al. Trends in silicates in the β Pictoris disk. Astrophys. J. 933, 54 (2022).

    Article 

    Google Scholar
     

  • Lenzuni, P., Gail, H.-P. & Henning, T. Dust evaporation in protostellar cores. Astrophys. J. 447, 848 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Shu, F. H., Shang, H. & Lee, T. Toward an astrophysical theory of chondrites. Science 271, 1545–1552 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Shu, F. H., Shang, H., Gounelle, M., Glassgold, A. E. & Lee, T. The origin of chondrules and refractory inclusions in chondritic meteorites. Astrophys. J. 548, 1029–1050 (2001).

    Article 

    Google Scholar
     

  • Juhász, A. et al. The 2008 Outburst of EX Lup—Silicate Crystals in Motion. Astrophys. J. 744, 118 (2012).

    Article 

    Google Scholar
     

  • Cecil, M. & Flock, M. Variability of the inner dead zone edge in 2D radiation hydrodynamic simulations. Astron. Astrophys. 692, A171 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kóspál, Á. et al. Time-resolved protoplanetary disk physics in DQ Tau with JWST. Astron. Astrophys. 703, A20 (2025).

  • Zagaria, F., Clarke, C. J., Rosotti, G. P. & Manara, C. F. Stellar multiplicity affects the correlation between protoplanetary disc masses and accretion rates: binaries explain high accretors in Upper Sco. Mon. Not. R. Astron. Soc. 512, 3538–3550 (2022).

    Article 

    Google Scholar
     

  • Green, J. D. et al. Spitzer IRS observations of FU Orionis objects. Astrophys. J. 648, 1099–1109 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Kóspál, Á. et al. Grain growth in newly discovered young eruptive stars. Astrophys. J. Lett. 895, L48 (2020).

    Article 

    Google Scholar
     

  • Glauser, A. M. et al. Dust amorphization in protoplanetary disks. Astron. Astrophys. 508, 247–257 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Fischer, W. J. et al. Accretion variability as a guide to stellar mass assembly. In Proc. Protostars and Planets VII (eds Inutsuka, S. et al.) Vol. 534 of Astronomical Society of the Pacific Conference Series, 355 (Astronomical Society of the Pacific, 2023).

  • Mairs, S. et al. The JCMT Transient Survey: six year summary of 450/850 μm protostellar variability and calibration pipeline version 2.0. Astrophys. J. 966, 215 (2024).

    Article 

    Google Scholar
     

  • Green, J. D. et al. Why are (almost) all the protostellar outflows aligned in Serpens Main? Astrophys. J. 972, 5 (2024).

    Article 

    Google Scholar
     

  • Bushouse, H. et al. JWST Calibration Pipeline. Zenodo https://doi.org/10.5281/zenodo.7577320 (2023).

  • Greenfield, P. & Miller, T. The Calibration Reference Data System. Astron. Comput. 16, 41–53 (2016).

    Article 

    Google Scholar
     

  • Bradley, L. et al. astropy/photutils: 2.0.2. Zenodo https://doi.org/10.5281/zenodo.13989456 (2024).

  • Law, D. R. et al. A 3D drizzle algorithm for JWST and practical application to the MIRI medium resolution spectrometer. Astron. J. 166, 45 (2023).

    Article 

    Google Scholar
     

  • Kim, J., Lee, J.-E., Kim, C.-H., Jeong, W.-S. & Yang, Y.-L. Near- to mid-infrared spectroscopic study of ice analysis using the AKARI/IRC and Spitzer/IRS spectra. J. Korean Astron. Soc. 58, 111–129 (2025).


    Google Scholar
     

  • Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K. & Denzmore, P. Interpreting spectral energy distributions from young stellar objects. I. A grid of 200,000 YSO model SEDs. Astrophys. J. Suppl. Ser. 167, 256–285 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Zeidler, S., Posch, T. & Mutschke, H. Optical constants of refractory oxides at high temperatures. Mid-infrared properties of corundum, spinel, and α-quartz, potential carriers of the 13 μm feature. Astron. Astrophys. 553, A81 (2013).

    Article 

    Google Scholar
     

  • Min, M., Hovenier, J. W. & de Koter, A. Modeling optical properties of cosmic dust grains using a distribution of hollow spheres. Astron. Astrophys. 432, 909–920 (2005).

    Article 

    Google Scholar
     

  • Erb, D. pybaselines: a Python library of algorithms for the baseline correction of experimental data. Zenodo https://doi.org/10.5281/zenodo.10676584 (2024).

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 

    Google Scholar
     

  • Foreman-Mackey, D. corner.py: scatterplot matrices in Python. J. Open Source Softw. 1, 24 (2016).

    Article 

    Google Scholar
     

  • Klarmann, L., Ormel, C. W. & Dominik, C. Radial and vertical dust transport inhibit refractory carbon depletion in protoplanetary disks. Astron. Astrophys. 618, L1 (2018).

    Article 

    Google Scholar
     

  • Dullemond, C. P. et al. RADMC-3D: a multi-purpose radiative transfer tool. Astrophysics Source Code Library, record ascl:1202.015 (ASCL, 2012).

  • Dullemond, C. P. & Monnier, J. D. The inner regions of protoplanetary disks. Annu. Rev. Astron. Astrophys. 48, 205–239 (2010).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments