Constable, G. & Somerville, B. A Century of Innovation: Twenty Engineering Achievements that Transformed our Lives (John Henry Press, 2003).
McLinden, M. O., Brown, J. S., Brignoli, R., Kazakov, A. F. & Domanski, P. A. Limited options for low-global-warming-potential refrigerants. Nat. Commun. 8, 14476 (2017).
McLinden, M. O., Seeton, C. J. & Pearson, A. New refrigerants and system configurations for vapor-compression refrigeration. Science 370, 791–796 (2020).
Velders, G. J. M., Andersen, S. O., Daniel, J. S., Fahey, D. W. & McFarland, M. The importance of the Montreal Protocol in protecting climate. Proc. Natl Acad. Sci. USA 104, 4814–4819 (2007).
Takeuchi, I. & Sandeman, K. Solid-state cooling with caloric materials. Phys. Today 68, 48–54 (2015).
Fähler, S. et al. Caloric effects in ferroic materials: new concepts for cooling. Adv. Eng. Mater. 14, 10–19 (2012).
Moya, X. & Mathur, N. D. Caloric materials for cooling and heating. Science 370, 797–803 (2020).
Liu, J., Gottschall, T., Skokov, K. P., Moore, J. D. & Gutfleisch, O. Giant magnetocaloric effect driven by structural transitions. Nat. Mater. 11, 620–626 (2012).
Gschneidner Jr, K. A., Pecharsky, V. K. & Tsokol, A. O. Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005).
Ma, R. et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science 357, 1130–1134 (2017).
Han, D. et al. Self-oscillating polymeric refrigerator with high energy efficiency. Nature 629, 1041–1046 (2024).
Xiao, F., Jin, M., Liu, J. & Jin, X. Elastocaloric effect in Ni50Fe19Ga27Co4 single crystals. Acta Mater. 96, 292–300 (2015).
Qian, S. et al. High-performance multimode elastocaloric cooling system. Science 380, 722–727 (2023).
Wang, R. et al. Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 366, 216–221 (2019).
Mañosa, L. et al. Giant solid-state barocaloric effect in the Ni–Mn–In magnetic shape-memory alloy. Nat. Mater. 9, 478–481 (2010).
Sun, Y. et al. Materials with barocaloric effect for solid-state refrigeration. J. Mater. Chem. A 13, 6152–6175 (2025).
Mañosa, L. et al. Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat. Commun. 2, 595 (2011).
Li, B. et al. Colossal barocaloric effects in plastic crystals. Nature 567, 506–510 (2019).
Piper, S. et al. Organic ionic plastic crystals having colossal barocaloric effects for sustainable refrigeration. Science 387, 56–62 (2025).
Zhang, K. et al. Colossal barocaloric effect in carboranes as a performance tradeoff. Adv. Funct. Mater. 32, 2112622 (2022).
Ohkoshi, S. et al. Giant adiabatic temperature change and its direct measurement of a barocaloric effect in a charge-transfer solid. Nat. Commun. 14, 8466 (2023).
Gao, Y. et al. Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides. Nat. Commun. 15, 1838 (2024).
Seo, J. et al. Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites. Nat. Commun. 13, 2536 (2022).
Ren, Q. et al. Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nat. Commun. 13, 2293 (2022).
Lünser, K. et al. Elastocaloric, barocaloric and magnetocaloric effects in spin crossover polymer composite films. Nat. Commun. 15, 6171 (2024).
García-Ben, J. et al. Discovery of colossal breathing-caloric effect under low applied pressure in the hybrid organic–inorganic MIL-53 (Al) material. Chem. Mater. 34, 3323–3332 (2022).
Lin, J. et al. Colossal and reversible barocaloric effect in liquid-solid-transition materials n-alkanes. Nat. Commun. 13, 596 (2022).
Lilley, D. & Prasher, R. Ionocaloric refrigeration cycle. Science 378, 1344–1348 (2022).
Metzdorf, J. et al. Electrocaloric cooling system utilizing latent heat transfer for high power density. Commun. Eng. 3, 55 (2024).
Qian, K. et al. Highly efficient mechanocaloric cooling using colossal barocaloric plastic crystals. Cell Rep. Phys. Sci. 5, 101981 (2024).
Han, H. et al. Controlled dissolution of a single ion from a salt interface. Nat. Commun. 15, 2401 (2024).
Majedi, S., Sreerama, L., Vessally, E. & Behmagham, F. Metal-free regioselective thiocyanation of (hetero) aromatic CH bonds using ammonium thiocyanate: an overview. J. Chem. Lett. 1, 25–31 (2020).
Zhang, Z. et al. Thermal batteries based on inverse barocaloric effects. Sci. Adv. 9, e0374 (2023).
Pecharsky, V. K. & Gschneidner Jr, K. A. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997).
Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).
Cong, D. et al. Colossal elastocaloric effect in ferroelastic Ni–Mn–Ti alloys. Phys. Rev. Lett. 122, 255703 (2019).
Li, X. et al. High-frequency bending-actuated elastocaloric cooler with enhanced cooling performance. Cell Rep. Phys. Sci. 6, 102669 (2025).
Gonnissen, D., Langenaeker, W., Hubin, A. & Geerlings, P. A (surface-enhanced) Raman spectroscopic study of the adsorption of S2O− and SCN− on a silver deposit. J. Raman Spectrosc. 29, 1031–1039 (1998).
Jarv, T., Bulmer, J. T. & Irish, D. E. An investigation of the digitized Raman band profiles of aqueous indium (III) chloride solutions. J. Phys. Chem. 81, 649–656 (1977).
Dong, J. et al. Raman observation of the interactions between NH4+, SO42−, and H2O in supersaturated (NH4)2SO4 droplets. J. Phys. Chem. B 111, 12170–12176 (2007).
Carey, D. M. & Korenowski, G. M. Measurement of the Raman spectrum of liquid water. J. Chem. Phys. 108, 2669–2675 (1998).
Tewari, G. D., Khandelwal, D. P. & Bist, H. D. Raman scattering study of phase transitions in NH4SCN. J. Chem. Phys. 82, 5624–5632 (1985).
Zhang, Z. et al. Local atomic structures and lattice dynamics of inverse colossal barocaloric ammonium thiocyanate. Phys. Rev. Mater. 7, 125402 (2023).
Adams, D. M. & Pogson, M. Vibrational spectroscopy at high pressures. Part 50. A Raman scattering study of MSCN (M = K, Rb, Cs, NH4) at high pressures. J. Raman Spectrosc. 19, 321–327 (1988).
AHRI 210/240: Performance Rating of Water-Chilling and Heat Pump Water-Heating Packages Using the Vapor Compression Cycle (Air-Conditioning, Heating, and Refrigeration Institute, 2023).
Srinivasan, K. V., Manimaran, A., Arulprakasajothi, M., Revanth, M. & Arolkar, V. A. Design and development of porous regenerator for Stirling cryocooler using additive manufacturing. Therm. Sci. Eng. Prog. 11, 195–203 (2019).
Bom, N. M., Usuda, E. O., Guimarães, G. M., Coelho, A. A. & Carvalho, A. M. G. Experimental setup for measuring the barocaloric effect in polymers: application to natural rubber. Rev. Sci. Instrum. 88, 046103 (2017).
Moia, M.A.Y. et al. Device for direct barocaloric measurement. Int. J. Thermophys. 46, 38 (2025).
Kawaguchi, S. et al. High-throughput powder diffraction measurement system consisting of multiple MYTHEN detectors at beamline BL02B2 of SPring-8. Rev. Sci. Instrum. 88, 085111 (2017).
Yang, X., Wang, X., Wang, Y., Li, K. & Zheng, H. From molecules to carbon materials—high pressure induced polymerization and bonding mechanisms of unsaturated compounds. Crystals 9, 490 (2019).
Su, L., Shi, K., Zhang, L., Wang, Y. & Yang, G. Static and dynamic diamond anvil cell (s-dDAC): a bidirectional remote controlled device for static and dynamic compression/decompression. Matter Radiat. Extremes 7, 018401 (2022).
Chang, B. et al. On the pressure dependence of salty aqueous eutectics. Cell Rep. Phys. Sci. 3, 100856 (2022).
Zheng, S. et al. Colossal electrocaloric effect in an interface-augmented ferroelectric polymer. Science 382, 1020–1026 (2023).
Hou, H. et al. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366, 1116–1121 (2019).
Hou, H., Qian, S. & Takeuchi, I. Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022).

