Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic Press, 2010).
Hashimoto, K. Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation Vol. 116 (Springer, 2000).
Mandal, D. & Banerjee, S. Surface acoustic wave (SAW) sensors: physics, materials, and applications. Sensors 22, 820 (2022).
Lu, X. et al. Harnessing exceptional points for ultrahigh sensitive acoustic wave sensing. Microsyst. Nanoeng. 11, 44 (2025).
Li, X. et al. Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. J. Mater. Chem. A 11, 9216–9238 (2023).
Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).
Hassanien, A. E. et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion. Photon. Res. 9, 1182–1190 (2021).
Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).
Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).
Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).
Qin, X. et al. Acoustic valves in microfluidic channels for droplet manipulation. Lab Chip 21, 3165–3173 (2021).
Whiteley, S. J. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).
Maity, S. et al. Coherent acoustic control of a single silicon vacancy spin in diamond. Nat. Commun. 11, 193 (2020).
Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).
Schütz, M. J. in Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment 143–196 (Springer, 2017).
Zhou, Y. et al. Electrically interfaced Brillouin-active waveguide for microwave photonic measurements. Nat. Commun. 15, 6796 (2024).
Sletten, L. R., Moores, B. A., Viennot, J. J. & Lehnert, K. W. Resolving phonon fock states in a multimode cavity with a double-slit qubit. Phys. Rev. 9, 021056 (2019).
Qiao, H. et al. Acoustic phonon phase gates with number-resolving phonon detection. Nat. Phys.21, 1801–1805 (2025).
Zivari, A. et al. On-chip distribution of quantum information using traveling phonons. Sci. Adv. 8, eadd2811 (2022).
Agostini, M. & Cecchini, M. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Nanotechnology 32, 312001 (2021).
Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).
Zhou, Y. et al. Nonreciprocal dissipation engineering via strong coupling with a continuum of modes. Phys. Rev. X 14, 021002 (2024).
Freedman, J. M. et al. Gigahertz-frequency, acousto-optic phase modulation of visible light in a CMOS-fabricated photonic circuit. Preprint at https://doi.org/10.48550/arXiv.2502.08012 (2025).
Li, B., Lin, Q. & Li, M. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).
Lin Q. et al. Optical multi-beam steering and communication using integrated acousto-optics arrays. Nat. Commun. 16, 4501 (2025).
Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nat. Commun. 13, 5426 (2022).
Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).
Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).
Tucker, E. Amplification of 9.3-kmc/sec ultrasonic pulses by maser action in ruby. Phys. Rev. Lett. 6, 547 (1961).
Fokker, P. A., Dijkhuis, J. I. & De Wijn, H. W. Stimulated emission of phonons in an acoustical cavity. Phys. Rev. B 55, 2925 (1997).
Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).
Pettit, R. M. et al. An optical tweezer phonon laser. Nat. Photon. 13, 402–405 (2019).
Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).
Beardsley, R. P., Akimov, A. V., Henini, M. & Kent, A. J. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice. Phys. Rev. Lett. 104, 085501 (2010).
Chafatinos, D. L. et al. Polariton-driven phonon laser. Nat. Commun. 11, 4552 (2020).
Papuccio-Fernández, I. et al. Polariton cascade phonon laser. Preprint at https://doi.org/10.48550/arXiv.2505.17336 (2025).
Ohtani, K. et al. An electrically pumped phonon-polariton laser. Sci. Adv. 5, eaau1632 (2019).
Okada, J. & Matino, H. Continuous oscillations of acoustoelectric current in CdS. Jpn. J. Appl. Phys. 3, 698 (1964).
Maines, J. D. & Paige, E. G. S. Current-spiking and self-locking of modes of the acousto-electric oscillator. Solid State Commun. 8, 421–425 (1970).
Gokhale, V. J. & Rais-Zadeh, M. Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators. Sci. Rep. 4, 5617 (2014).
Mansoorzare, H. & Abdolvand, R. Acoustoelectric amplification in lateral-extensional composite piezo-silicon resonant cavities. In Proc. 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 1–3 (IEEE, 2019).
Hackett, L. et al. Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nat. Electron. 6, 76–85 (2023).
Hackett, L. et al. Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions. Nat. Commun. 12, 2769 (2021).
Hackett, L. et al. Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures. Nat. Mater. 23, 1386–1393 (2024).
Izhar, M. M. A. et al. Periodically poled aluminum scandium nitride bulk acoustic wave resonators and filters for communications in the 6G era. Microsyst. Nanoeng. 11, 19 (2025).
Kino, G. S. & Reeder, T. M. A normal mode theory for the Rayleigh wave amplifier. IEEE Trans. Electron Devices 18, 909–920 (1971).
Pippard, A. Acoustic amplification in semiconductors and metals. Philos. Mag. 8, 161–165 (1963).
Coldren, L. A. Monolithic Acoustic Surface Wave Amplifiers. PhD thesis, Stanford Univ. (1972).
Chatterjee, E., Soh, D. & Eichenfield, M. Quantum-limited acoustoelectric amplification in a piezoelectric-2DEG heterostructure. Preprint at http://arxiv.org/html/2510.09248v2 (2025).
Danicki, E. Reversing multistrip coupler. Ultrasonics 31, 421–424 (1993).
Keysight Technologies. Measuring phase noise with a real-time sampling oscilloscope. https://docs.keysight.com/kkbopen/measuring-phase-noise-with-a-real-time-sampling-oscilloscope-584447063.html (2025).
Rhea, R. W. Oscillator Design & Computer Simulation (Prentice Hall, 1990).

