Thursday, January 15, 2026
No menu items!
HomeNatureAn electrically injected solid-state surface acoustic wave phonon laser

An electrically injected solid-state surface acoustic wave phonon laser

  • Morgan, D. Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing (Academic Press, 2010).

  • Hashimoto, K. Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation Vol. 116 (Springer, 2000).

  • Mandal, D. & Banerjee, S. Surface acoustic wave (SAW) sensors: physics, materials, and applications. Sensors 22, 820 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, X. et al. Harnessing exceptional points for ultrahigh sensitive acoustic wave sensing. Microsyst. Nanoeng. 11, 44 (2025).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Advances in sensing mechanisms and micro/nanostructured sensing layers for surface acoustic wave-based gas sensors. J. Mater. Chem. A 11, 9216–9238 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shao, L. et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica 6, 1498–1505 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hassanien, A. E. et al. Efficient and wideband acousto-optic modulation on thin-film lithium niobate for microwave-to-photonic conversion. Photon. Res. 9, 1182–1190 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kittlaus, E. A. et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics. Nat. Photon. 15, 43–52 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, S. et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat. Mater. 21, 540–546 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, X. et al. Surface acoustic wave microfluidics. Lab Chip 13, 3626–3649 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, X. et al. Acoustic valves in microfluidic channels for droplet manipulation. Lab Chip 21, 3165–3173 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Whiteley, S. J. et al. Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics. Nat. Phys. 15, 490–495 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Maity, S. et al. Coherent acoustic control of a single silicon vacancy spin in diamond. Nat. Commun. 11, 193 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arrangoiz-Arriola, P. et al. Resolving the energy levels of a nanomechanical oscillator. Nature 571, 537–540 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schütz, M. J. in Quantum Dots for Quantum Information Processing: Controlling and Exploiting the Quantum Dot Environment 143–196 (Springer, 2017).

  • Zhou, Y. et al. Electrically interfaced Brillouin-active waveguide for microwave photonic measurements. Nat. Commun. 15, 6796 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sletten, L. R., Moores, B. A., Viennot, J. J. & Lehnert, K. W. Resolving phonon fock states in a multimode cavity with a double-slit qubit. Phys. Rev. 9, 021056 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Qiao, H. et al. Acoustic phonon phase gates with number-resolving phonon detection. Nat. Phys.21, 1801–1805 (2025).

  • Zivari, A. et al. On-chip distribution of quantum information using traveling phonons. Sci. Adv. 8, eadd2811 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agostini, M. & Cecchini, M. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Nanotechnology 32, 312001 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, P. et al. Acoustic separation of circulating tumor cells. Proc. Natl Acad. Sci. USA 112, 4970–4975 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Y. et al. Nonreciprocal dissipation engineering via strong coupling with a continuum of modes. Phys. Rev. X 14, 021002 (2024).

    CAS 

    Google Scholar
     

  • Freedman, J. M. et al. Gigahertz-frequency, acousto-optic phase modulation of visible light in a CMOS-fabricated photonic circuit. Preprint at https://doi.org/10.48550/arXiv.2502.08012 (2025).

  • Li, B., Lin, Q. & Li, M. Frequency–angular resolving LiDAR using chip-scale acousto-optic beam steering. Nature 620, 316–322 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin Q. et al. Optical multi-beam steering and communication using integrated acousto-optics arrays. Nat. Commun. 16, 4501 (2025).

  • Zhao, H., Li, B., Li, H. & Li, M. Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics. Nat. Commun. 13, 5426 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neuman, T. et al. A phononic interface between a superconducting quantum processor and quantum networked spin memories. npj Quantum Inf. 7, 121 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics. Science 377, 1333–1337 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tucker, E. Amplification of 9.3-kmc/sec ultrasonic pulses by maser action in ruby. Phys. Rev. Lett. 6, 547 (1961).

    Article 
    ADS 

    Google Scholar
     

  • Fokker, P. A., Dijkhuis, J. I. & De Wijn, H. W. Stimulated emission of phonons in an acoustical cavity. Phys. Rev. B 55, 2925 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Pettit, R. M. et al. An optical tweezer phonon laser. Nat. Photon. 13, 402–405 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grudinin, I. S., Lee, H., Painter, O. & Vahala, K. J. Phonon laser action in a tunable two-level system. Phys. Rev. Lett. 104, 083901 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Beardsley, R. P., Akimov, A. V., Henini, M. & Kent, A. J. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice. Phys. Rev. Lett. 104, 085501 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chafatinos, D. L. et al. Polariton-driven phonon laser. Nat. Commun. 11, 4552 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Papuccio-Fernández, I. et al. Polariton cascade phonon laser. Preprint at https://doi.org/10.48550/arXiv.2505.17336 (2025).

  • Ohtani, K. et al. An electrically pumped phonon-polariton laser. Sci. Adv. 5, eaau1632 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okada, J. & Matino, H. Continuous oscillations of acoustoelectric current in CdS. Jpn. J. Appl. Phys. 3, 698 (1964).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maines, J. D. & Paige, E. G. S. Current-spiking and self-locking of modes of the acousto-electric oscillator. Solid State Commun. 8, 421–425 (1970).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gokhale, V. J. & Rais-Zadeh, M. Phonon-electron interactions in piezoelectric semiconductor bulk acoustic wave resonators. Sci. Rep. 4, 5617 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansoorzare, H. & Abdolvand, R. Acoustoelectric amplification in lateral-extensional composite piezo-silicon resonant cavities. In Proc. 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), 1–3 (IEEE, 2019).

  • Hackett, L. et al. Non-reciprocal acoustoelectric microwave amplifiers with net gain and low noise in continuous operation. Nat. Electron. 6, 76–85 (2023).


    Google Scholar
     

  • Hackett, L. et al. Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions. Nat. Commun. 12, 2769 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hackett, L. et al. Giant electron-mediated phononic nonlinearity in semiconductor–piezoelectric heterostructures. Nat. Mater. 23, 1386–1393 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Izhar, M. M. A. et al. Periodically poled aluminum scandium nitride bulk acoustic wave resonators and filters for communications in the 6G era. Microsyst. Nanoeng. 11, 19 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kino, G. S. & Reeder, T. M. A normal mode theory for the Rayleigh wave amplifier. IEEE Trans. Electron Devices 18, 909–920 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Pippard, A. Acoustic amplification in semiconductors and metals. Philos. Mag. 8, 161–165 (1963).

    Article 
    ADS 

    Google Scholar
     

  • Coldren, L. A. Monolithic Acoustic Surface Wave Amplifiers. PhD thesis, Stanford Univ. (1972).

  • Chatterjee, E., Soh, D. & Eichenfield, M. Quantum-limited acoustoelectric amplification in a piezoelectric-2DEG heterostructure. Preprint at http://arxiv.org/html/2510.09248v2 (2025).

  • Danicki, E. Reversing multistrip coupler. Ultrasonics 31, 421–424 (1993).

    Article 

    Google Scholar
     

  • Keysight Technologies. Measuring phase noise with a real-time sampling oscilloscope. https://docs.keysight.com/kkbopen/measuring-phase-noise-with-a-real-time-sampling-oscilloscope-584447063.html (2025).

  • Rhea, R. W. Oscillator Design & Computer Simulation (Prentice Hall, 1990).

  • RELATED ARTICLES

    Most Popular

    Recent Comments