Thursday, January 15, 2026
No menu items!
HomeNatureA foundation model for continuous glucose monitoring data

A foundation model for continuous glucose monitoring data

  • Shilo, S. et al. 10 K: a large-scale prospective longitudinal study in Israel. Eur. J. Epidemiol. 36, 1187–1194 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Reicher, L. et al. Deep phenotyping of health–disease continuum in the Human Phenotype Project. Nat. Med. 31, 3191–3203 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Nathan, D. M. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • King, P., Peacock, I. & Donnelly, R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br. J. Clin. Pharmacol. 48, 643–648 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gude, F. et al. Glycemic variability and its association with demographics and lifestyles in a general adult population. J. Diabetes Sci. Technol. 11, 780–790 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Saab, K. et al. Capabilities of Gemini models in medicine. Preprint at https://doi.org/10.48550/arxiv.2404.18416 (2024).

  • Zhou, Y. et al. A foundation model for generalizable disease detection from retinal images. Nature 622, 156–163 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutsker, G., Rossman, H., Godiva, N. & Segal, E. COMPRER: a multimodal multi-objective pretraining framework for enhanced medical image representation. Preprint at https://doi.org/10.48550/arxiv.2403.09672 (2024).

  • Yuan, H. et al. Self-supervised learning for human activity recognition using 700,000 person-days of wearable data. npj Digit. Med. 7, 91 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thapa, R. et al. SleepFM: multi-modal representation learning for sleep across brain activity, ECG and respiratory signals. Proc. Mach. Learn. Res. 235, 48019–48037 (2024).

  • Chen, R. J. et al. Towards a general-purpose foundation model for computational pathology. Nat. Med. 30, 850–862 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krishnan, R., Rajpurkar, P. & Topol, E. J. Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 6, 1346–1352 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).

    Article 

    Google Scholar
     

  • Rawshani, A. et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N. Engl. J. Med. 376, 1407–1418 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Moser, E. G., Crew, L. B. & Garg, S. K. Role of continuous glucose monitoring in diabetes management. Av. Diabetol. 26, 73–78 (2010).

    Article 

    Google Scholar
     

  • Battelino, T. et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 11, 42–57 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Kieu, A., King, J., Govender, R. D. & Östlundh, L. The benefits of utilizing continuous glucose monitoring of diabetes mellitus in primary care: a systematic review. J. Diabetes Sci. Technol. 17, 762–774 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Holzer, R., Bloch, W. & Brinkmann, C. Continuous glucose monitoring in healthy adults-possible applications in health care, wellness, and sports. Sensors 22, 2030 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zahedani, A. D. et al. Digital health application integrating wearable data and behavioral patterns improves metabolic health. npj Digit. Med. 6, 216 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shilo, S. et al. Continuous glucose monitoring and intrapersonal variability in fasting glucose. Nat. Med. 30, 1424–1431 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • U.S. Food & Drug Administration. FDA clears first over-the-counter continuous glucose monitor. FDA https://www.fda.gov/news-events/press-announcements/fda-clears-first-over-counter-continuous-glucose-monitor (2024).

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://doi.org/10.48550/arxiv.1802.03426 (2018).

  • Bergenstal, R. M. et al. Glucose management indicator (GMI): a new term for estimating A1C from continuous glucose monitoring. Diabetes Care 41, 2275–2280 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Broll, S. et al. Interpreting blood GLUcose data with R package iglu. PLoS ONE 16, e0248560 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodbard, D. New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol. Ther. 11, 551–565 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Self-improving generative foundation model for synthetic medical image generation and clinical applications. Nat. Med. 31, 609–617 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Keshet, A. et al. CGMap: characterizing continuous glucose monitor data in thousands of non-diabetic individuals. Cell Metab. 35, 758–769 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vickers, A. J., Van Calster, B. & Steyerberg, E. W. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 352, i6 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Calster, B. et al. Performance evaluation of predictive AI models to support medical decisions: overview and guidance. Preprint at https://doi.org/10.48550/arxiv.2412.10288 (2024).

  • Htet, T. D. et al. Rationale and design of a randomised controlled trial testing the effect of personalised diet in individuals with pre-diabetes or type 2 diabetes mellitus treated with metformin. BMJ Open 10, e037859 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rein, M. S. et al. BREAst Cancer Personalised NuTrition (BREACPNT): dietary intervention in breast cancer survivors treated with endocrine therapy—a protocol for a randomised clinical trial. BMJ Open 12, e062498 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ben-Yacov, O. et al. Personalized postprandial glucose response-targeting diet versus Mediterranean diet for glycemic control in prediabetes. Diabetes Care 44, 1980–1991 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • The Diabetes Prevention Program Research Group. The Diabetes Prevention Program. Design and methods for a clinical trial in the prevention of type 2 diabetes. Diabetes Care 22, 623–634 (1999).

    Article 

    Google Scholar
     

  • International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32, 1327–1334 (2009).

    Article 

    Google Scholar
     

  • Cersosimo, E., Solis-Herrera, C., Trautmann, M. E., Malloy, J. & Triplitt, C. L. Assessment of pancreatic β-cell function: review of methods and clinical applications. Curr. Diabetes Rev. 10, 2–42 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdul-Ghani, M. A. et al. The relationship between fasting hyperglycemia and insulin secretion in subjects with normal or impaired glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 295, E401–E406 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ansari, A. F. et al. Chronos: learning the language of time series. Transact. Mach. Learn. Res. https://openreview.net/forum?id=gerNCVqqtR (2024).

  • Rabanser, S., Januschowski, T., Flunkert, V., Salinas, D. & Gasthaus, J. The effectiveness of discretization in forecasting: an empirical study on neural time series models. Preprint at https://doi.org/10.48550/arxiv.2005.10111 (2020).

  • van den Oord, A. et al. WaveNet: a generative model for raw audio. In Proc. 9th ISCA Speech Synthesis Workshop 125 (2016).

  • van den Oord, A., Kalchbrenner, N. & Kavukcuoglu, K. Pixel recurrent neural networks. In Proc. 33rd International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.) 1747–1756 (2016).

  • Danne, T. et al. International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cefalu, W. T. et al. A global initiative to deliver precision health in diabetes. Nat. Med. 30, 1819–1822 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahlqvist, E., Prasad, R. B. & Groop, L. Subtypes of type 2 diabetes determined from clinical parameters. Diabetes 69, 2086–2093 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Xiong, Z. et al. How generalizable are foundation models when applied to different demographic groups and settings? NEJM AI https://doi.org/10.1056/AIcs2400497 (2024).

  • Vaswani, A. et al. Attention is all you need. In Adv. Neural Information Processing Systems (eds Guyon, I. et al.) 30, 5998–6008 (2017).

  • Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In Proc. 7th International Conference on Learning Representations https://openreview.net/forum?id=Bkg6RiCqY7 (2019).

  • Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In Proc. 37th International Conference on Machine Learning (eds Daumé, H. D. III & Singh, A.) 119, 1597–1607 (2020).

  • He, K., Fan, H., Wu, Y., Xie, S. & Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 9729–9738 (2020).

  • Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th International Conference on Machine Learning (eds. Meila, M. & Zhang, T.) 139, 8748–8763 (2021).

  • Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (eds. Burstein, J. et al.) Vol. 1 (Long and Short Papers), 4171–4186 (2019).

  • Yuan, H. et al. Self-supervised learning of accelerometer data provides new insights for sleep and its association with mortality. npj Digit. Med. 7, 86 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments