Burmeister, E. F. et al. Photonic integrated circuit optical buffer for packet-switched networks. Opt. Express 17, 6629–6635 (2009).
Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).
Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).
Kudelin, I. et al. Photonic chip-based low-noise microwave oscillator. Nature 627, 534–539 (2024).
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).
Feng, H. et al. Integrated lithium niobate microwave photonic processing engine. Nature 627, 80–87 (2024).
Chauhan, N. et al. Ultra-low loss visible light waveguides for integrated atomic, molecular, and quantum photonics. Opt. Express 30, 6960–6969 (2022).
Corato-Zanarella, M., Ji, X., Mohanty, A. & Lipson, M. Absorption and scattering limits of silicon nitride integrated photonics in the visible spectrum. Opt. Express 32, 5718–5728 (2024).
Bose, D. et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light Sci. Appl. 13, 156 (2024).
Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).
Lai, Y.-H. et al. Earth rotation measured by a chip-scale ring laser gyroscope. Nat. Photon. 14, 345–349 (2020).
Lu, X. et al. Emerging integrated laser technologies in the visible and short near-infrared regimes. Nat. Photon. 18, 1010–1023 (2024).
Tran, M. A. et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022).
Pedersen, A. T., Grüner-Nielsen, L. & Rottwitt, K. Measurement and modeling of low-wavelength losses in silica fibers and their impact at communication wavelengths. J. Lightwave Technol. 27, 1296–1300 (2009).
Armani, D., Kippenberg, T., Spillane, S. & Vahala, K. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).
Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).
Himeno, A., Kato, K. & Miya, T. Silica-based planar lightwave circuits. IEEE J. Sel. Top. Quantum Electron. 4, 913–924 (1998).
Birtch, E. M., Shelby, J. E. & Marc Whalen, J. Properties of binary GeO2-SiO2 glasses. Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 182–185 (2006).
Kao, C. K. Nobel lecture: Sand from centuries past: Send future voices fast. Rev. Mod. Phys. 82, 2299–2303 (2010).
Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).
Dong, C-H. et al. Coupling of light from an optical fiber taper into silver nanowires. Appl. Phys. Lett. 95, 221109 (2009).
Mitchell, W. J., Thibeault, B. J., John, D. D. & Reynolds, T. E. Highly selective and vertical etch of silicon dioxide using ruthenium films as an etch mask. J. Vac. Sci. Technol. A 39, 043204 (2021).
Yuan, Z. et al. Soliton pulse pairs at multiple colours in normal dispersion microresonators. Nat. Photon. 17, 977–983 (2023).
Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).
Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).
Eggleton, B. J., Steel, M. J. & Poulton, C. G.Brillouin Scattering Part 2, 1st edn, Vol. 110 (Academic Press, 2022).
Lu, Z. et al. Synthesized soliton crystals. Nat. Commun. 12, 3179 (2021).
Siddharth, A. et al. Near ultraviolet photonic integrated lasers based on silicon nitride. APL Photon. 7, 046108 (2022).
Corato-Zanarella, M. et al. Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photon. 17, 157–164 (2023).
Hill, K. O., Fujii, Y., Johnson, D. C. & Kawasaki, B. S. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 32, 647–649 (1978).
Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).
Carmon, T. & K, V. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys. 3, 430–435 (2007).
Chen, H.-J. et al. Chaos-assisted two-octave-spanning microcombs. Nat. Commun. 11, 2336 (2020).
Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755–756 (2021).
Isichenko, A. et al. Sub-Hz fundamental, sub-kHz integral linewidth self-injection locked 780 nm hybrid integrated laser. Sci. Rep. 14, 27015 (2024).
Liu, P. et al. Near-visible integrated soliton microcombs with detectable repetition rates. Nat. Commun. 16, 4780 (2025).
Lu, X. et al. Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica 6, 1535–1541 (2019).
Karpov, M., Pfeiffer, M. H. P., Liu, J., Lukashchuk, A. & Kippenberg, T. J. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun. 9, 1146 (2018).
Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380–384 (2019).
Renaud, D. et al. Sub-1 Volt and high-bandwidth visible to near-infrared electro-optic modulators. Nat. Commun. 14, 1496 (2023).
Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).
Xie, Y. et al. Soliton frequency comb generation in CMOS-compatible silicon nitride microresonators. Photon. Res. 10, 1290–1296 (2022).
Chiles, J. et al. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Opt. Lett. 43, 1527–1530 (2018).
Ji, X. et al. Ultra-low-loss silicon nitride photonics based on deposited films compatible with foundries. Laser Photon. Rev. 17, 2200544 (2023).
Chia, X. X. et al. Low-power four-wave mixing in deuterated silicon-rich nitride ring resonators. J. Lightwave Technol. 41, 3115–3130 (2023).
Frigg, A. et al. Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films. Opt. Express 27, 37795–37805 (2019).
Zhang, S. et al. Low-temperature sputtered ultralow-loss silicon nitride for hybrid photonic integration. Laser Photon. Rev. 18, 2300642 (2024).
Golshani, N. et al. Low-loss, low-temperature PVD SiN waveguides. In Proc. IEEE 17th Int. Conf. Group IV Photonics (GFP), 1–2 (IEEE, 2021).
Guo, J. et al. Investigation of Q degradation in low-loss Si3N4 from heterogeneous laser integration. Opt. Lett. 49, 4613–4616 (2024).
Liu, K. et al. Ultralow 0.034 dB/m loss wafer-scale integrated photonics realizing 720 million Q and 380 μW threshold Brillouin lasing. Opt. Lett. 47, 1855–1858 (2022).
Botter, R. et al. Guided-acoustic stimulated brillouin scattering in silicon nitride photonic circuits. Sci. Adv. 8, eabq2196 (2022).
Qiu, W. et al. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express 21, 31402–31419 (2013).
Kondratiev, N. M. & Gorodetsky, M. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).
Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).
Chen, H.-J., Colburn, K. et al. Data for “Towards fibre-like-loss for photonic integration from violet to near-IR”. Zenodo https://doi.org/10.5281/zenodo.17478213 (2025).

